
Revised5.92 Report on the Algorithmic Language
Scheme

MICHAEL SPERBER

WILLIAM CLINGER, R. KENT DYBVIG, MATTHEW FLATT, ANTON VAN STRAATEN

(Editors)
RICHARD KELSEY, JONATHAN REES

(Editors, Revised5 Report on the Algorithmic Language Scheme)
ROBERT BRUCE FINDLER, JACOB MATTHEWS

(Authors, formal semantics)

18 January 2007

SUMMARY

The report gives a defining description of the programming language Scheme. Scheme is a statically scoped and properly
tail-recursive dialect of the Lisp programming language invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was
designed to have an exceptionally clear and simple semantics and few different ways to form expressions. A wide variety
of programming paradigms, including imperative, functional, and message passing styles, find convenient expression in
Scheme.
The introduction offers a brief history of the language and of the report. It also gives a short introduction to the basic
concepts of the language.
Chapter 2 explains Scheme’s number types. Chapter 3 defines the read syntax of Scheme programs. Chapter 4 presents
the fundamental semantic ideas of the language. Chapter 5 defines notational conventions used in the rest of the report.
Chapters 6 and 7 describe libraries and top-level programs, the basic organizational units of Scheme programs. Chapter 8
explains the expansion process for Scheme code.
Chapter 9 explains the Scheme base library which contains the fundamental forms useful to programmers.
Appendix 10 provides a formal semantics for a core of Scheme. Appendix A contains definitions for some of the derived
forms described in the report.
The report concludes with a list of references and an alphabetic index.
This report is accompanied by a report describing standard libraries [40]; references to this document are identified by
designations such as “library section” or “library chapter”.

*** DRAFT***
This is a preliminary draft. It is intended to reflect the decisions taken by the editors’ committee, but contains many
mistakes, ambiguities and inconsistencies.

2 Revised5.92 Scheme

CONTENTS

Introduction . 3

Description of the language

1 Overview of Scheme 6

1.1 Basic types 6

1.2 Expressions 7

1.3 Variables and binding 7

1.4 Definitions 7

1.5 Procedures 8

1.6 Procedure calls and syntactic keywords . . . 8

1.7 Assignment 8

1.8 Derived forms and macros 9

1.9 Syntactic datums and datum values 9

1.10 Libraries . 9

1.11 Top-level programs 9

2 Numbers . 10

2.1 Numerical types 10

2.2 Exactness 10

2.3 Implementation restrictions 10

2.4 Infinities and NaNs 11

3 Lexical syntax and read syntax 11

3.1 Notation . 11

3.2 Lexical syntax 12

3.3 Read syntax 16

4 Semantic concepts 17

4.1 Programs and libraries 17

4.2 Variables, syntactic keywords, and regions . 17

4.3 Exceptional situations 18

4.4 Argument checking 18

4.5 Safety . 18

4.6 Boolean values 19

4.7 Multiple return values 19

4.8 Storage model 19

4.9 Proper tail recursion 19

5 Notation and terminology 20

5.1 Requirement levels 20

5.2 Entry format 20

5.3 Evaluation examples 21

5.4 Unspecified behavior 21

5.5 Exceptional situations 22

5.6 Naming conventions 22

5.7 Syntax violations 22

6 Libraries . 22

6.1 Library form 23

6.2 Import and export levels 25

6.3 Primitive syntax 26

6.4 Examples 27

7 Top-level programs 28

7.1 Top-level program syntax 28

7.2 Top-level program semantics 28

8 Expansion process 29

9 Base library . 30

9.1 Base types 30

9.2 Definitions 30

9.3 Syntax definitions 31

9.4 Bodies and sequences 31

9.5 Expressions 31

9.6 Equivalence predicates 36

9.7 Procedure predicate 39

9.8 Unspecified value 39

9.9 Generic arithmetic 39

9.10 Booleans . 46

9.11 Pairs and lists 46

9.12 Symbols . 49

9.13 Characters 49

9.14 Strings . 50

9.15 Vectors . 51

9.16 Errors and violations 52

9.17 Control features 52

9.18 Iteration . 54

9.19 Quasiquotation 55

9.20 Binding constructs for syntactic keywords . 56

9.21 Macro transformers 57

9.22 Tail calls and tail contexts 59

Formal Semantics

10 Formal semantics 61

10.1 Grammar 61

10.2 Quote . 64

10.3 Multiple Values 64

10.4 Exceptions 64

10.5 Arithmetic & Basic Forms 66

10.6 Pairs & Eqv 67

10.7 Procedures & Application 68

10.8 Call/cc and Dynamic Wind 71

10.9 Library Top Level 71

10.10Underspecification 72

Appendices

A Sample definitions for derived forms 74

B Additional material 75

C Example . 75

References . 77

Alphabetic index of definitions of concepts, key-
words, and procedures 80

Introduction 3

INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish proce-
dures from lambda expressions and symbols, to use a sin-
gle lexical environment for all variables, and to evaluate
the operator position of a procedure call in the same way
as an operand position. By relying entirely on procedure
calls to express iteration, Scheme emphasized the fact that
tail-recursive procedure calls are essentially gotos that pass
arguments. Scheme was the first widely used program-
ming language to embrace first class escape procedures,
from which all previously known sequential control struc-
tures can be synthesized. A subsequent version of Scheme
introduced the concept of exact and inexact numbers, an
extension of Common Lisp’s generic arithmetic. More re-
cently, Scheme became the first programming language to
support hygienic macros, which permit the syntax of a
block-structured language to be extended in a consistent
and reliable manner.

Numerical computation was long neglected by the Lisp
community. Until Common Lisp there was no carefully
thought out strategy for organizing numerical computa-
tion, and with the exception of the MacLisp system [35]
little effort was made to execute numerical code efficiently.
The Scheme reports recognized the excellent work of the
Common Lisp committee and accepted many of their rec-
ommendations, while simplifying and generalizing in some
ways consistent with the purposes of Scheme.

Background

The first description of Scheme was written by Gerald Jay
Sussman and Guy Lewis Steele Jr. in 1975 [44]. A revised
report by Steele and Sussman [43] appeared in 1978 and
described the evolution of the language as its MIT imple-
mentation was upgraded to support an innovative com-
piler [41]. Three distinct projects began in 1981 and 1982
to use variants of Scheme for courses at MIT, Yale, and
Indiana University [36, 33, 19]. An introductory computer
science textbook using Scheme was published in 1984 [1].
A number of textbooks describing and using Scheme have
been published since [14].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementa-
tions of Scheme therefore met in October 1984 to work
toward a better and more widely accepted standard for
Scheme. Participating in this workshop were Hal Abel-
son, Norman Adams, David Bartley, Gary Brooks, William
Clinger, Daniel Friedman, Robert Halstead, Chris Han-
son, Christopher Haynes, Eugene Kohlbecker, Don Oxley,
Jonathan Rees, Guillermo Rozas, Gerald Jay Sussman, and
Mitchell Wand. Kent Pitman made valuable contributions
to the agenda for the workshop but was unable to at-
tend the sessions. Their report [7], edited by Will Clinger,
was published at MIT and Indiana University in the sum-
mer of 1985. Further revision took place in the spring
of 1986 [9] (edited by Jonathan Rees and Will Clinger),
and in the spring of 1988 [11] (also edited by Will Clinger
and Jonathan Rees). Another revision published in 1998,
edited by Richard Kelsey, Will Clinger and Jonathan Rees,
reflected further revisions agreed upon in a meeting at Xe-
rox PARC in June 1992 [26].

Attendees of the Scheme Workshop in Pittsburgh in Octo-
ber 2002 formed a Strategy Committee to discuss a process
for producing new revisions of the report. The strategy
committee drafted a charter for Scheme standardization.
This charter, together with a process for selecting edito-
rial committees for producing new revisions for the report,
was confirmed by the attendees of the Scheme Workshop in
Boston in November 2003. Subsequently, a Steering Com-
mittee according to the charter was selected, consisting of
Alan Bawden, Guy L. Steele Jr., and Mitch Wand. An
editors’ committee charged with producing this report was
also formed at the end of 2003, consisting of Will Clinger,
R. Kent Dybvig, Marc Feeley, Matthew Flatt, Richard
Kelsey, Manuel Serrano, and Mike Sperber, with Marc Fee-
ley acting as Editor-in-Chief. Richard Kelsey resigned from
the committee in April 2005, and was replaced by Anton
van Straaten. Marc Feeley and Manuel Serrano resigned
from the committee in January 2006. Subsequently, the
charter was revised to reduce the size of the editors’ com-
mittee to five and to replace the office of Editor-in-Chief by
a Chair and a Project Editor [39]. R. Kent Dybvig served
as Chair, and Mike Sperber served as Project Editor. Parts
of the report were posted as Scheme Requests for Imple-
mentation (SRFIs) and discussed by the community before
being revised and finalized for the report [22, 6, 13, 21, 16].
Jacob Matthews and Robby Findler wrote the operational
semantics for the language core.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors

4 Revised5.92 Scheme

of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

Guiding principles

To help guide the standardization effort, the editors have
adopted a set of principles, presented below. Like the
Scheme language defined in Revised5 Report on the Algo-
rithmic Language Scheme [26], the language described in
this report is intended to:

• allow programmers to read each other’s code, and al-
low development of portable programs that can be ex-
ecuted in any conforming implementation of Scheme;

• derive its power from simplicity, a small number of
generally useful core syntactic forms and procedures,
and no unnecessary restrictions on how they are com-
posed;

• allow programs to define new procedures and new hy-
gienic syntactic forms;

• support the representation of program source code as
data;

• make procedure calls powerful enough to express any
form of sequential control, and allow programs to per-
form non-local control operations without the use of
global program transformations;

• allow interesting, purely functional programs to run
indefinitely without terminating or running out of
memory on finite-memory machines;

• allow educators to use the language to teach program-
ming effectively, at various levels and with a variety of
pedagogical approaches; and

• allow researchers to use the language to explore the de-
sign, implementation, and semantics of programming
languages.

In addition, this report is intended to:

• allow programmers to create and distribute substan-
tial programs and libraries, e.g., SRFI implementa-
tions, that run without modification in a variety of
Scheme implementations;

• support procedural, syntactic, and data abstraction
more fully by allowing programs to define hygiene-
bending and hygiene-breaking syntactic abstractions
and new unique datatypes along with procedures and
hygienic macros in any scope;

• allow programmers to rely on a level of automatic run-
time type and bounds checking sufficient to ensure
type safety; and

• allow implementations to generate efficient code, with-
out requiring programmers to use implementation-
specific operators or declarations.

While it was possible to write portable programs in Scheme
as described in Revised5 Report on the Algorithmic Lan-
guage Scheme, and indeed portable Scheme programs were
written prior to this report, many Scheme programs were
not, primarily because of the lack of substantial stan-
dardized libraries and the proliferation of implementation-
specific language additions.

In general, Scheme should include building blocks that al-
low a wide variety of libraries to be written, include com-
monly used user-level features to enhance portability and
readability of library and application code, and exclude fea-
tures that are less commonly used and easily implemented
in separate libraries.

The language described in this report is inteded to also be
backward compatible with programs written in Scheme as
described in Revised5 Report on the Algorithmic Language
Scheme to the extent possible without compromising the
above principles and future viability of the language. With
respect to future viability, the editors have operated under
the assumption that many more Scheme programs will be
written in the future than exist in the present, so the future
programs are those with which we must be most concerned.

Acknowledgements

We would like to thank the following people for their help:
Eli Barzilay, Alan Bawden, Michael Blair, Per Bothner,
Trent Buck, Thomas Bushnell, Taylor Campbell, Pascal
Costanza, John Cowan, George Carrette, Andy Cromarty,
David Cuthbert, Pavel Curtis, Jeff Dalton, Olivier Danvy,
Ken Dickey, Ray Dillinger, Blake Coverett, Jed Davis,
Bruce Duba, Carl Eastlund, Sebastian Egner, Tom Emer-
son, Marc Feeley, Andy Freeman, Richard Gabriel, Martin
Gasbichler, Peter Gavin, Arthur A. Gleckler, Aziz Ghu-
loum, Yekta Gürsel, Ken Haase, Lars T Hansen, Dave Her-
man, Robert Hieb, Nils M. Holm, Paul Hudak, Stanislav
Ievlev, Aubrey Jaffer, Shiro Kawai, Michael Lenaghan,
Morry Katz, Felix Klock, Donovan Kolbly, Marcin Kowal-
czyk, Chris Lindblad, Thomas Lord, Bradley Lucier, Mark
Meyer, Jim Miller, Dan Muresan, Jason Orendorff, Jim
Philbin, John Ramsdell, Jeff Read, Jorgen Schaefer, Paul
Schlie, Manuel Serrano, Mike Shaff, Olin Shivers, Jonathan
Shapiro, Jens Axel Søgaard, Pinku Surana, Julie Sussman,
Sam Tobin-Hochstadt, David Van Horn, Andre van Ton-
der, Reinder Verlinde, Oscar Waddell, Perry Wagle, Alan
Watson, Daniel Weise, Andrew Wilcox, Henry Wu, and

Introduction 5

Ozan Yigit. We thank Carol Fessenden, Daniel Fried-
man, and Christopher Haynes for permission to use text
from the Scheme 311 version 4 reference manual. We
thank Texas Instruments, Inc. for permission to use text
from the TI Scheme Language Reference Manual [45].
We gladly acknowledge the influence of manuals for MIT
Scheme [33], T [37], Scheme 84 [23], Common Lisp [42],
Chez Scheme [15], PLT Scheme [20], and Algol 60 [2].

We also thank Betty Dexter for the extreme effort she put
into setting this report in TEX, and Donald Knuth for de-
signing the program that caused her troubles.

The Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology, the Computer Science Department
of Indiana University, the Computer and Information Sci-
ences Department of the University of Oregon, and the
NEC Research Institute supported the preparation of this
report. Support for the MIT work was provided in part by
the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-
80-C-0505. Support for the Indiana University work was
provided by NSF grants NCS 83-04567 and NCS 83-03325.

6 Revised5.92 Scheme

DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

This chapter gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of the following
chapters. For reference purposes, appendix 10 provides a
formal semantics for a core subset of Scheme.

Following Algol, Scheme is a statically scoped program-
ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types [47]. Types
are associated with values (also called objects) rather than
with variables. (Some authors refer to languages with
latent types as weakly typed or dynamically typed lan-
guages.) Other languages with latent types are Python,
Ruby, Smalltalk, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly
typed or statically typed languages) include Algol 60, C,
C#, Java, Haskell and ML.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent in-
clude C#, Haskell, ML, Python, Ruby, Smalltalk and other
Lisp dialects.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 4.9.

Scheme was one of the first languages to support proce-
dures as objects in their own right. Procedures can be cre-
ated dynamically, stored in data structures, returned as re-
sults of procedures, and so on. Other languages with these
properties include Common Lisp, Haskell, ML, Smalltalk,
and Ruby.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 9.17.

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, whether

the procedure needs the result of the evaluation or not.
C, C#, Common Lisp, Python, Ruby, and Smalltalk are
other languages that always pass arguments by value. This
is distinct from the lazy-evaluation semantics of Haskell, or
the call-by-name semantics of Algol 60, where an argument
expression is not evaluated unless its value is needed by
the procedure. Note that call-by-value refers to a different
distinction than the distinction between by-value and by-
reference passing in Pascal. In Scheme, all data structures
are passed by reference.

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Scheme distinguishes be-
tween exact arithmetic, which corresponds to the mathe-
matical ideal, and inexact arithmetic on approximations.
Exact arithmetic includes arithmetic on integers, rationals
and complex numbers.

The following sections give a brief overview of the most
fundamental elements of the language. The purpose of
this overview is to explain enough of the basic concepts of
the language to facilitate understanding of the subsequent
chapters of the report, which are organized as a reference
manual. Consequently, this overview is not a complete
introduction of the language, nor is it precise in all respects.

1.1. Basic types

Scheme programs manipulate values, which are also re-
ferred to as objects. Scheme values are organized into sets
of values called types. This gives an overview of the funda-
mentally important types of the Scheme language. More
types are described in later chapters.

Note: As Scheme is latently typed, the use of the term type

in this report differs from the use of the term in the context of

other languages, particularly those with manifest typing.

Boolean values A boolean value denotes a truth value,
and can either be true or false. In Scheme, the value for
“false” is written #f. The value “true” is written #t. In
most places where a truth value is expected, however, any
value different from #f counts as true.

Numbers Scheme supports a rich variety of numerical
data types, including integers of arbitrary precision, ra-
tional numbers, complex numbers and inexact numbers of
various kinds. Chapter 2 gives an overview of the structure
of Scheme’s numerical tower.

1. Overview of Scheme 7

Characters Scheme characters mostly correspond to
textual characters. More precisely, they are isomorphic
to the scalar values of the Unicode standard.

Strings Strings are finite sequences of characters with
fixed length and thus represent arbitrary Unicode texts.

Symbols A symbol is an object representing a string
that cannot be modified. This string is called the symbol’s
name. Unlike strings, two symbols whose names are spelled
the same way are indistinguishable. Symbols are useful for
many applications; for instance, they may be used the way
enumerated values are used in other languages.

Pairs and lists A pair is a data structure with two com-
ponents. The most common use of pairs is to represent
(singly linked) lists, where the first component (the “car”)
represents the first element of the list, and the second com-
ponent (the “cdr”) the rest of the list. Scheme also has a
distinguished empty list, which is the last cdr in a chain of
pairs representing a list.

Vectors Vectors, like lists, are linear data structures rep-
resenting finite sequences of arbitrary objects. Whereas the
elements of a list are accessed sequentially through the pair
chain representing it, the elements of a vector are addressed
by an integer index. Thus, vectors are more appropriate
than lists for random access to elements.

Procedures As mentioned in the introduction, proce-
dures are values in Scheme.

1.2. Expressions

The most important elements of Scheme code are expres-
sions. Expressions can be evaluated, producing a value.
(Actually, any number of values—see section 4.7.) The
most fundamental expressions are literal expressions:

#t =⇒ #t

23 =⇒ 23

This notation means that the expression #t evaluates to
#t, that is, the value for “true”, and that the expression
23 evaluates to the number 23.

Compound expressions are formed by placing parentheses
around their subexpressions. The first subexpression is an
operator and identifies an operation; the remaining subex-
pressions are operands :

(+ 23 42) =⇒ 65

(+ 14 (* 23 42)) =⇒ 980

In the first of these examples, +, the operator, is the name
of the built-in operation for addition, and 23 and 42 are the
operands. The expression (+ 23 42) reads as “the sum of
23 and 42”. Compound expressions can be nested—the
second example reads as “the sum of 14 and the product
of 23 and 42”.

As these examples indicate, compound expressions in
Scheme are always written using the same prefix nota-
tion. As a consequence, the parentheses are needed to
indicate structure, and “superfluous” parentheses, which
are permissible in mathematics and many programming
languages, are not allowed in Scheme.

As in many other languages, whitespace and newlines are
not significant when they separate subexpressions of an
expression, and can be used to indicate structure.

1.3. Variables and binding

Scheme allows identifiers to denote values. These identi-
fiers are called variables. (More precisely, variables denote
locations. This distinction is not important, however, for
a large proportion of Scheme code.)

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

In this case, the operator of the expression, let, is a bind-
ing construct. The parenthesized structure following the
let lists variables alongside expressions: the variable x

alongside 23, and the variable y alongside 42. The let

expression binds x to 23, and y to 42. These bindings are
available in the body of the let expression, (+ x y), and
only there.

1.4. Definitions

The variables bound by a let expression are local, because
their bindings are visible only in the let’s body. Scheme
also allows creating top-level bindings for identifiers as fol-
lows:

(define x 23)

(define y 42)

(+ x y) =⇒ 65

(These are actually “top-level” in the body of a top-level
program or library; see section 1.10 below.)

The first two parenthesized structures are definitions ; they
create top-level bindings, binding x to 23 and y to 42. Defi-
nitions are not expressions, and cannot appear in all places
where an expression can occur. Moreover, a definition has
no value.

8 Revised5.92 Scheme

Bindings follow the lexical structure of the program: When
several bindings with the same name exist, a variable refers
to the binding that is closest to it, starting with its occur-
rence in the program and going from inside to outside,
going all the way to a top-level binding only if no local
binding can be found along the way:

(define x 23)

(define y 42)

(let ((y 43))

(+ x y)) =⇒ 66

(let ((y 43))

(let ((y 44))

(+ x y))) =⇒ 67

1.5. Procedures

Definitions can also be used to define procedures:

(define (f x)

(+ x 42))

(f 23) =⇒ 65

A procedure is, slightly simplified, an abstraction over an
expression. In the example, the first definition defines a
procedure called f. (Note the parentheses around f x,
which indicate that this is a procedure definition.) The
expression (f 23) is a procedure call, meaning, roughly,
“evaluate (+ x 42) (the body of the procedure) with x

bound to 23”.

As procedures are regular values, they can be passed to
other procedures:

(define (f x)

(+ x 42))

(define (g p x)

(p x))

(g f 23) =⇒ 65

In this example, the body of g is evaluated with p bound to
f and x bound to 23, which is equivalent to (f 23), which
evaluates to 42.

In fact, many predefined operations of Scheme are bindings
for procedures. The + operation, for example, which re-
ceives special syntactic treatment in many other languages,
is just a regular identifier in Scheme, bound to a procedure
that adds numbers. The same holds for * and many others:

(define (h op x y)

(op x y))

(h + 23 42) =⇒ 65

(h * 23 42) =⇒ 966

Procedure definitions are not the only way to create pro-
cedures. A lambda expression creates a new procedure as
a value, with no need to specify a name:

((lambda (x) (+ x 42)) 23) =⇒ 65

The entire expression in this example is a procedure call;
its operator is (lambda (x) (+ x 42)), which evaluates
to a procedure that takes a single number and adds 42 to
it.

1.6. Procedure calls and syntactic key-
words

Whereas (+ 23 42), (f 23), and ((lambda (x) (+ x

42)) 23) are all examples of procedure calls, lambda and
let expressions are not. This is because let, even though
it is an identifier, is not a variable, but is instead a syntac-
tic keyword . An expression that has a syntactic keyword as
its operator obeys special rules determined by the keyword.
The define identifier in a definition is also a syntactic key-
word. Hence, definitions are also not procedure calls.

In the case of lambda, these rules specify that the first
subform is a list of parameters, and the remaining subforms
are the body of the procedure. In let expressions, the
first subform is a list of binding specifications, and the
remaining subforms are a body of expressions.

Procedure calls can be distinguished from these “special
forms” by looking for a syntactic keyword in the first posi-
tion of an expression: if it is not a syntactic keyword, the
expression is a procedure call. The set of syntactic key-
words of Scheme is fairly small, which usually makes this
task fairly simple. It is possible, however, to create new
bindings for syntactic keywords; see below.

1.7. Assignment

Scheme variables bound by definitions or let or lambda

forms are not actually bound directly to the values specified
in the respective bindings, but to locations containing these
values. The contents of these locations can subsequently
be modified destructively via assignment :

(let ((x 23))

(set! x 42)

x) =⇒ 42

In this case, the body of the let expression consists of two
expressions which are evaluated sequentially, with the value
of the final expression becoming the value of the entire let
expression. The expression (set! x 42) is an assignment,
saying “replace the value in the location denoted by x with
42”. Thus, the previous value of 23 is replaced by 42.

1. Overview of Scheme 9

1.8. Derived forms and macros

Many of the special forms specified in this report can
be translated into more basic special forms. For exam-
ple, let expressions can be translated into procedure calls
and lambda expressions. The following two expressions are
equivalent:

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

((lambda (x y) (+ x y)) 23 42)

=⇒ 65

Special forms like let expressions are called derived forms
because their semantics can be derived from that of other
kinds of forms by a syntactic transformation. Procedure
definitions are also derived forms. The following two defi-
nitions are equivalent:

(define (f x)

(+ x 42))

(define f

(lambda (x)

(+ x 42)))

In Scheme, it is possible for a program to create its own
derived forms by binding syntactic keywords to macros:

(define-syntax def

(syntax-rules ()

((def f (p ...) body)

(define (f p ...)

body))))

(def f (x)

(+ x 42))

The define-syntax construct specifies that a parenthe-
sized structure matching the pattern (def f (p ...)

body), where f, p, and body are pattern variables, is trans-
lated to (define (f p ...) body). Thus, the def form
appearing in the example gets translated to:

(define (f x)

(+ x 42))

The ability to create new syntactic keywords makes Scheme
extremely flexible and expressive, enabling the formula-
tion of many features built into other languages as derived
forms.

1.9. Syntactic datums and datum values

A subset of the Scheme values called datum values have
a special status in the language. These include booleans,
numbers, characters, and strings as well as lists and vec-
tors whose elements are datums. Each datum value may

be represented in textual form as a syntactic datum, which
can be written out and read back in without loss of infor-
mation. Several syntactic datums can represent the same
datum value, but the datum value corresponding to a syn-
tactic datum is uniquely determined. Moreover, each da-
tum value can be trivially translated to a literal expression
in a program by prepending a ’ to a corresponding syntac-
tic datum:

’23 =⇒ 23

’#t =⇒ #t

’foo =⇒ foo

’(1 2 3) =⇒ (1 2 3)

’#(1 2 3) =⇒ #(1 2 3)

The ’ is, as shown in the previous examples, not needed for
number or boolean literals. The identifier foo is a syntactic
datum that can represent a symbol with name “foo”, and
’foo is a literal expression with that symbol as its value.
(1 2 3) is a syntactic datum that can represent a list with
elements 1, 2, and 3, and ’(1 2 3) is a literal expression
with this list as its value. Likewise, #(1 2 3) is a syntactic
datum that can represent a vector with elements 1, 2 and
3, and ’#(1 2 3) is the corresponding literal.

The syntactic datums form a superset of the Scheme forms.
Thus, datums can be used to represent Scheme forms as
data objects. In particular, symbols can be used to repre-
sent identifiers.

’(+ 23 42) =⇒ (+ 23 42)

’(define (f x) (+ x 42))

=⇒ (define (f x) (+ x 42))

This facilitates writing programs that operate on Scheme
source code, in particular interpreters and program trans-
formers.

1.10. Libraries

Scheme code is organized in components called libraries.
Each library contains definitions and expressions. It can
import definitions from other libraries and export defini-
tions to other libraries:

(library (hello)

(export)

(import (r6rs base)

(r6rs i/o simple))

(display "Hello World")

(newline))

1.11. Top-level programs

A Scheme program is invoked via a top-level program. Like
a library, a top-level program contains definitions and ex-
pressions, but specifies an entry point for execution. Thus,
a top-level program defines, via the transitive closure of
the libraries it imports, a Scheme program.

10 Revised5.92 Scheme

#!r6rs

(import (r6rs base)

(r6rs i/o ports))

(put-bytes (standard-output-port)

(call-with-port

(open-file-input-port

(cadr (command-line)))

get-bytes-all))

2. Numbers

This chapter describes Scheme’s representations for num-
bers. It is important to distinguish between the mathemat-
ical numbers, the Scheme numbers that attempt to model
them, the machine representations used to implement the
Scheme numbers, and notations used to write numbers.
This report uses the types number, complex, real, ratio-
nal, and integer to refer to both mathematical numbers
and Scheme numbers. The fixnum and flonum types refer
to certain subtypes of the Scheme numbers, as explained
below.

2.1. Numerical types

Mathematically, numbers may be arranged into a tower of
subtypes in which each level is a subset of the level above
it:

number
complex
real
rational
integer

For example, 5 is an integer. Therefore 5 is also a rational,
a real, and a complex. The same is true of the Scheme
numbers that model 5. For Scheme numbers, these types
are defined by the predicates number?, complex?, real?,
rational?, and integer?.

There is no simple relationship between a number’s type
and its representation inside a computer. Although most
implementations of Scheme offer at least three different
representations of 5, these different representations denote
the same integer.

Scheme’s numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use many dif-
ferent representations for numbers, this should not be ap-
parent to a casual programmer writing simple programs.

It is necessary, however, to distinguish between numbers
that are represented exactly and those that may not be.
For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic
algebra system. On the other hand, the results of measure-
ments are inherently inexact, and irrational numbers may

be approximated by rational and therefore inexact approx-
imations. In order to catch uses of inexact numbers where
exact numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal
to the dimension of type.

A fixnum is an exact integer whose value lies within a cer-
tain implementation-dependent subrange of the exact inte-
gers. (Library section 9.1 describes a library for computing
with fixnums.) Likewise, every implementation is required
to designate a subset of its inexact reals as flonums, and
to convert certain external representations into flonums.
(Library section 9.2 describes a library for computing with
fixnums.) Note that this does not imply that an implemen-
tation is required to use floating point representations.

2.2. Exactness

Scheme numbers are either exact or inexact. A number
is exact if it is written as an exact constant or was de-
rived from exact numbers using only exact operations. A
number is inexact if it is written as an inexact constant
or was derived from inexact numbers. Thus inexactness is
contagious.

Exact arithmetic is reliable in the following sense: If exact
numbers are passed to any of the arithmetic procedures
described in section 9.9, and an exact number is returned,
then the result is mathematically correct. This is gener-
ally not true of computations involving inexact numbers
because approximate methods such as floating point arith-
metic may be used, but it is the duty of each implementa-
tion to make the result as close as practical to the mathe-
matically ideal result.

2.3. Implementation restrictions

Implementations of Scheme are required to implement the
whole tower of subtypes given in section 2.1.

Implementations are required to support exact integers and
exact rationals of practically unlimited size and precision,
and to implement certain procedures (listed in 9.9.1) so
they always return exact results when given exact argu-
ments.

Implementations may support only a limited range of in-
exact numbers of any type, subject to the requirements of
this section. For example, an implementation may limit
the range of inexact reals (and therefore the range of in-
exact integers and rationals) to the dynamic range of the
flonum format. Furthermore the gaps between the repre-
sentable inexact integers and rationals are likely to be very
large in such an implementation as the limits of this range
are approached.

3. Lexical syntax and read syntax 11

An implementation may use floating point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that the
IEEE floating point standards be followed by implemen-
tations that use floating point representations, and that
implementations using other representations should match
or exceed the precision achievable using these floating point
standards [25].

In particular, implementations that use floating point rep-
resentations must follow these rules: A floating point result
must be represented with at least as much precision as is
used to express any of the inexact arguments to that op-
eration. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact ar-
guments, to produce exact answers whenever possible (for
example the square root of an exact 4 ought to be an exact
2). If, however, an exact number is operated upon so as to
produce an inexact result (as by sqrt), and if the result is
represented in floating point, then the most precise float-
ing point format available must be used; but if the result
is represented in some other way then the representation
must have at least as much precision as the most precise
floating point format available.

It is the programmer’s responsibility to avoid using inex-
act numbers with magnitude or significand too large to be
represented in the implementation.

2.4. Infinities and NaNs

Positive infinity is regarded as a real (but not rational)
number, whose value is indeterminate but greater than all
rational numbers. Negative infinity is regarded as a real
(but not rational) number, whose value is indeterminate
but less than all rational numbers.

A NaN is regarded as a real (but not rational) number
whose value is so indeterminate that it might represent
any real number, including positive or negative infinity,
and might even be greater than positive infinity or less
than negative infinity.

3. Lexical syntax and read syntax

The syntax of Scheme code is organized in three levels:

1. the lexical syntax that describes how a program text
is split into a sequence of lexemes,

2. the read syntax, formulated in terms of the lexical syn-
tax, that structures the lexeme sequence as a sequence
of syntactic datums, where a syntactic datum is a re-
cursively structured entity,

3. the program syntax formulated in terms of the read
syntax, imposing further structure and assigning
meaning to syntactic datums.

Syntactic datums (also called external representations)
double as a notation for data, and Scheme’s (r6rs i/o

ports) library (library section 7.2) provides the get-datum
and put-datum procedures for reading and writing syntac-
tic datums, converting between their textual representation
and the corresponding values. A syntactic datum can be
used in a program to obtain the corresponding value using
quote (see section 9.5.1).

Moreover, valid Scheme expressions form a subset of the
syntactic datums. Consequently, Scheme’s syntax has the
property that any sequence of characters that is an expres-
sion is also a syntactic datum representing some object.
This can lead to confusion, since it may not be obvious
out of context whether a given sequence of characters is
intended to denote data or program. It is also a source
of power, since it facilitates writing programs such as in-
terpreters and compilers that treat programs as data (or
vice versa). A syntactic datum occurring in program text
is often called a form.

Note that several syntactic datums may represent the
same object, a so-called datum value. For example, both
“#e28.000” and “#x1c” are syntactic datums representing
the exact integer 28; The syntactic datums “(8 13)”, “(
08 13)”, “(8 . (13 . ()))” (and more) all represent a
list containing the integers 8 and 13. Syntactic datums
that denote equal objects are always equivalent as forms of
a program.

Because of the close correspondence between syntactic da-
tums and datum values, this report sometimes uses the
term datum to denote either a syntactic datum or a da-
tum value when the exact meaning is apparent from the
context.

An implementation is not permitted to extend the lexical
or read syntax in any way, with one exception: it need not
treat the syntax #!〈identifier〉, for any 〈identifier〉 (see sec-
tion 3.2.3) that is not r6rs, as a syntax violation, and it
may use specific #!-prefixed identifiers as flags indicating
that subsequent input contains extensions to the standard
lexical syntax. The syntax #!r6rs may be used to signify
that the input which follows is written purely with the lex-
ical syntax described by this report. It is otherwise treated
as a comment; see section 3.2.2.

This chapter overviews and provides formal accounts of the
lexical syntax and the read syntax.

3.1. Notation

The formal syntax for Scheme is written in an extended
BNF. Non-terminals are written using angle brackets; case
is insignificant for non-terminal names.

All spaces in the grammar are for legibility. 〈Empty〉
stands for the empty string.

12 Revised5.92 Scheme

The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉; and 〈thing〉+ means at least one 〈thing〉.

Some non-terminal names refer to the Unicode scalar
values of the same name: 〈character tabulation〉
(U+0009), 〈linefeed〉 (U+000A), 〈line tabulation〉
(U+000B), 〈form feed〉 (U+000C), 〈carriage return〉
(U+000D), 〈space〉 (U+0020), 〈next line (nel)〉 (U+0085),
〈line separator〉 (U+2028), and 〈paragraph separator〉
(U+2029).

3.2. Lexical syntax

The lexical syntax describes how a character sequence is
split into a sequence of lexemes, omitting non-significant
portions such as comments and whitespace. The charac-
ter sequence is assumed to be text according to the Uni-
code standard [46]. Some of the lexemes, such as numbers,
identifiers, strings etc. of the lexical syntax are syntactic
datums in the read syntax, and thus represent data. Be-
sides the formal account of the syntax, this section also
describes what datum values are denoted by these syntac-
tic datums.

Note that the lexical syntax, in the description of com-
ments, contains a forward reference to 〈datum〉, which is
described as part of the read syntax. However, being com-
ments, these 〈datum〉s do not play a significant role in the
syntax.

Case is significant except in boolean datums, number da-
tums, and hexadecimal numbers denoting Unicode scalar
values. For example, #x1A and #X1a are equivalent. The
identifier Foo is, however, distinct from the identifier FOO.

3.2.1. Formal account

〈Interlexeme space〉 may occur on either side of any lexeme,
but not within a lexeme.

Lexemes that require implicit termination (identifiers,
numbers, characters, booleans, and dot) are terminated
by any 〈delimiter〉 or by the end of the input, but not nec-
essarily by anything else.

The following two characters are reserved for future exten-
sions to the language: { }

〈lexeme〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉
| (|) | [|] | #(| ’ | ` | , | ,@ | .

〈delimiter〉 −→ 〈whitespace〉 | (|) | [|] | " | ;

〈whitespace〉 −→ 〈character tabulation〉
| 〈linefeed〉 | 〈line tabulation〉 | 〈form feed〉
| 〈carriage return〉 | 〈next line (nel)〉
| 〈any character whose category is Zs, Zl, or Zp〉

〈comment〉 −→ ; 〈all subsequent characters up to a
〈linefeed〉, 〈line separator〉,
or 〈paragraph separator〉〉

| 〈nested comment〉
| #; 〈datum〉
| #!r6rs

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉
〈interlexeme space〉 −→ 〈atmosphere〉*

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈peculiar identifier〉

〈initial〉 −→ 〈constituent〉 | 〈special initial〉
| 〈inline hex escape〉

〈letter〉 −→ a | b | c | ... | z

| A | B | C | ... | Z

〈constituent〉 −→ 〈letter〉
| 〈any character whose Unicode scalar value is greater than

127, and whose category is Lu, Ll, Lt, Lm, Lo, Mn, Mc,
Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co〉

〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =

| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈hex digit〉 −→ 〈digit〉
| a | A | b | B | c | C | d | D | e | E | f | F

〈special subsequent〉 −→ + | - | . | @

〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+

〈peculiar identifier〉 −→ + | - | ... | -> 〈subsequent〉*
〈boolean〉 −→ #t | #T | #f | #F

〈character〉 −→ #\〈any character〉
| #\〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ nul | alarm | backspace | tab

| linefeed | vtab | page | return | esc

| space | delete

〈string〉 −→ " 〈string element〉* "

〈string element〉 −→ 〈any character other than " or \〉
| \a | \b | \t | \n | \v | \f | \r

| \" | \\

| \〈linefeed〉 | \〈space〉
| 〈inline hex escape〉

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉

The following rules for 〈num R〉, 〈complex R〉, 〈real R〉,
〈ureal R〉, 〈uinteger R〉, and 〈prefix R〉 should be repli-

3. Lexical syntax and read syntax 13

cated for R = 2, 8, 10, and 16. There are no rules for
〈decimal 2〉, 〈decimal 8〉, and 〈decimal 16〉, which means
that numbers containing decimal points or exponents must
be in decimal radix.

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i

| 〈real R〉 + 〈naninf〉 i | 〈real R〉 - 〈naninf〉 i

| 〈real R〉 + i | 〈real R〉 - i

| + 〈ureal R〉 i | - 〈ureal R〉 i

| + 〈naninf〉 i | - 〈naninf〉 i

| + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| + 〈naninf〉 | - 〈naninf〉

〈naninf〉 −→ nan.0 | inf.0

〈ureal R〉 −→ 〈uinteger R〉
| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉 〈mantissa width〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ #* 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* #* 〈suffix〉
| 〈digit 10〉+ #+ . #* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+ #*
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | E | s | S | f | F

| d | D | l | L

〈mantissa width〉 −→ 〈empty〉
| | 〈digit 10〉+

〈sign〉 −→ 〈empty〉 | + | -

〈exactness〉 −→ 〈empty〉
| #i | #I | #e | #E

〈radix 2〉 −→ #b | #B

〈radix 8〉 −→ #o | #O

〈radix 10〉 −→ 〈empty〉 | #d | #D

〈radix 16〉 −→ #x | #X

〈digit 2〉 −→ 0 | 1

〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈hex digit〉

3.2.2. Whitespace and comments

Whitespace characters are spaces, linefeeds, carriage re-
turns, character tabulations, form feeds, line tabulations,
and any other character whose category is Zs, Zl, or Zp.
Whitespace is used for improved readability and as nec-
essary to separate lexemes from each other. Whitespace
may occur between any two lexemes, but not within a lex-

eme. Whitespace may also occur inside a string, where it
is significant.

The lexical syntax includes several comment forms. In all
cases, comments are invisible to Scheme, except that they
act as delimiters, so a comment cannot appear in the mid-
dle of an identifier or number.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears (i.e., it is terminated by a linefeed char-
acter).

Another way to indicate a comment is to prefix a 〈datum〉
(cf. Section 3.3.1) with #;, possibly with whitespace before
the 〈datum〉. The comment consists of the comment prefix
#; and the 〈datum〉 together. (This notation is useful for
“commenting out” sections of code.)

Block comments may be indicated with properly nested #|

and |# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

;; base case

(if (= n 0)

#;(= n 1)

1 ; identity of *

(* n (fact (- n 1))))))

Rationale: #| . . . |# cannot be used to comment out an arbi-

trary datum or set of datums; it works only when none of the

datums include a string with an unmatched #| or |# character

sequence. While #| . . . |# and ; can often be used, with care, to

comment out a datum, only #; allows the programmer to clearly

communicate that a single datum has been commented out, as

opposed to a block or line of arbitrary text.

The lexeme #!r6rs, which signifies that the program text
which follows is written purely with the lexical syntax de-
scribed in this report, is also otherwise treated as a com-
ment.

3.2.3. Identifiers

Most identifiers allowed by other programming languages
are also acceptable to Scheme. In particular, a sequence of
letters, digits, and “extended alphabetic characters” that
begins with a character that cannot begin a number is an
identifier. In addition, +, -, and ... are identifiers. Here
are some examples of identifiers:

lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

14 Revised5.92 Scheme

Extended alphabetic characters may be used within iden-
tifiers as if they were letters. The following are extended
alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Moreover, all characters whose Unicode scalar values are
greater than 127 and whose Unicode category is Lu, Lt,
Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm,
Sk, So, or Co can be used within identifiers. Moreover,
any character can appear as the constituent of an identi-
fier when denoted via a hexadecimal escape sequence. For
example, the identifier H\x65;llo is the same as the iden-
tifier Hello, and the identifier \x3BB; is the same as the
identifier λ.

Any identifier may be used as a variable or as a syntactic
keyword (see sections 4.2 and 6.3.2) in a Scheme program.

Moreover, when viewed as a datum value, an identifier de-
notes a symbol (see section 9.12).

3.2.4. Booleans

The standard boolean objects for true and false are written
as #t and #f. The character after a boolean literal must
be a delimiter character, such as a space or parenthesis.

3.2.5. Characters

Characters are written using the notation #\〈character〉
or #\〈character name〉 or #\x〈digit 16〉+, where the last
specifies the Unicode scalar value of a character with a
hexadecimal number of no more than eight digits.

For example:

#\a =⇒ lower case letter a
#\A =⇒ upper case letter A
#\(=⇒ left parenthesis
#\ =⇒ space character
#\nul =⇒ U+0000
#\alarm =⇒ U+0007
#\backspace =⇒ U+0008
#\tab =⇒ U+0009
#\linefeed =⇒ U+000A
#\vtab =⇒ U+000B
#\page =⇒ U+000C
#\return =⇒ U+000D
#\esc =⇒ U+001B
#\space =⇒ U+0020

; preferred way to write a space
#\delete =⇒ U+007F

#\xFF =⇒ U+00FF
#\x03BB =⇒ U+03BB
#\x00006587 =⇒ U+6587
#\λ =⇒ U+03BB

#\x0001z =⇒ &lexical exception

#\λx =⇒ &lexical exception
#\alarmx =⇒ &lexical exception
#\alarm x =⇒ U+0007

; followed by x

#\Alarm =⇒ &lexical exception
#\alert =⇒ &lexical exception
#\xA =⇒ U+000A
#\xFF =⇒ U+00FF
#\xff =⇒ U+00FF
#\x ff =⇒ U+0078

; followed by another datum, ff

#\x(ff) =⇒ U+0078
; followed by another datum,
; a parenthesized ff

#\(x) =⇒ &lexical exception
#\(x =⇒ &lexical exception
#\((x) =⇒ U+0028

; followed by another datum,
; parenthesized x

#\x00110000 =⇒ &lexical exception
; out of range

#\x000000001 =⇒ &lexical exception
; too many digits

#\xD800 =⇒ &lexical exception
; in excluded range

(The notation &lexical exception means that the line in
question is a lexical syntax violation.)

Case is significant in #\〈character〉, and in in #\〈character
name〉, but not in #\x〈digit 16〉+. The character after a
〈character〉 must be a delimiter character such as a space
or parenthesis. This rule resolves various ambiguous cases,
for example, the sequence of characters “#\space” could be
taken to be either a representation of the space character
or a representation of the character “#\s” followed by a
representation of the symbol “pace”.

3.2.6. Strings

String are written as sequences of characters enclosed
within doublequotes ("). Within a string literal, various
escape sequences denote characters other than themselves.
Escape sequences always start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008

• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \v : line tabulation, U+000B

• \f : formfeed, U+000C

• \r : return, U+000D

3. Lexical syntax and read syntax 15

• \" : doublequote, U+0022

• \\ : backslash, U+005C

• \〈linefeed〉 : nothing

• \〈space〉 : space, U+0020 (useful for terminating
the previous escape sequence before continuing with
whitespace)

• \x〈digit 16〉+; : (note the terminating semi-colon)
where no more than eight 〈digit 16〉s are provided,
and the sequence of 〈digit 16〉s forms a hexadecimal
number between 0 and #x10FFFF excluding the range
[#xD800, #xDFFF].

These escape sequences are case-sensitive, except that
〈digit 16〉 can be an uppercase or lowercase hexadecimal
digit.

Any other character in a string after a backslash is an er-
ror. Any character outside of an escape sequence and not
a doublequote stands for itself in the string literal. For
example the single-character string "λ" (double quote, a
lower case lambda, double quote) denotes the same string
literal as "\x03bb;".

Examples:

"abc" =⇒ U+0061, U+0062, U+0063
"\x41;bc" =⇒ "Abc" ; U+0041, U+0062, U+0063
"\x41; bc" =⇒ "A bc"

; U+0041, U+0020, U+0062, U+0063
"\x41bc;" =⇒ U+41BC
"\x41" =⇒ &lexical exception
"\x;" =⇒ &lexical exception
"\x41bx;" =⇒ &lexical exception
"\x00000041;" =⇒ "A" ; U+0041
"\x0010FFFF;" =⇒ U+10FFFF
"\x00110000;" =⇒ &lexical exception

; out of range
"\x000000001;"=⇒ &lexical exception

; too many digits
"\xD800;" =⇒ &lexical exception

; in excluded range

3.2.7. Numbers

The syntax of written representations for numbers is de-
scribed formally by the 〈number〉 rule in the formal gram-
mar. Note that case is not significant in numerical con-
stants.

A number may be written in binary, octal, decimal, or hex-
adecimal by the use of a radix prefix. The radix prefixes
are #b (binary), #o (octal), #d (decimal), and #x (hexadec-
imal). With no radix prefix, a number is assumed to be
expressed in decimal.

A numerical constant may be specified to be either exact or
inexact by a prefix. The prefixes are #e for exact, and #i

for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation
of a number has no exactness prefix, the constant may be
either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a “#” character in the place of a
digit; otherwise it is exact.

In systems with inexact numbers of varying precisions, it
may be useful to specify the precision of a constant. For
this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the
inexact representation. The letters s, f, d, and l specify
the use of short , single, double, and long precision, respec-
tively. (When fewer than four internal inexact represen-
tations exist, the four size specifications are mapped onto
those available. For example, an implementation with two
internal representations may map short and single together
and long and double together.) In addition, the exponent
marker e specifies the default precision for the implemen-
tation. The default precision has at least as much precision
as double, but implementations may wish to allow this de-
fault to be set by the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

If x is an external representation of an inexact real number
that contains no vertical bar, and p is a sequence of 1 or
more decimal digits, then x|p is an external representation
that denotes the best binary floating point approximation
to x using a p-bit significand. For example, 1.1|53 is an
external representation for the best approximation to 1.1
in IEEE double precision.

If x is an external representation of an inexact real number
that contains no vertical bar, then x by itself should be
regarded as equivalent to x|53.

Implementations that use binary floating point representa-
tions of real numbers should represent x|p using a p-bit
significand if practical, or by a greater precision if a p-
bit significand is not practical, or by the largest available
precision if p or more bits of significand are not practical
within the implementation.

Note: The precision of a significand should not be confused
with the number of bits used to represent the significand. In
the IEEE floating point standards, for example, the significand’s
most significant bit is implicit in single and double precision but
is explicit in extended precision. Whether that bit is implicit or
explicit does not affect the mathematical precision. In imple-
mentations that use binary floating point, the default precision
can be calculated by calling the following procedure:

(define (precision)

(do ((n 0 (+ n 1))

16 Revised5.92 Scheme

(x 1.0 (/ x 2.0)))

((= 1.0 (+ 1.0 x)) n)))

Note: When the underlying floating-point representation is

IEEE double precision, the |p suffix should not always be

omitted: Denormalized numbers have diminished precision, and

therefore should carry a |p suffix with the actual width of the

significand.

The literals +inf.0 and -inf.0 represent positive and neg-
ative infinity, respectively. The +nan.0 literal represents
the NaN that is the result of (/ 0.0 0.0), and may rep-
resent other NaNs as well.

If a 〈decimal 10〉 contains no vertical bar and does not
contain one of the exponent markers s, f, d, or l, but does
contain a decimal point or the exponent marker e, then
it is an external representation for a flonum. Furthermore
inf.0, +inf.0, -inf.0, nan.0, +nan.0, and -nan.0 are
external representations for flonums. Some or all of the
other external representations for inexact reals may also
represent flonums, but that is not required by this report.

If a 〈decimal 10〉 contains a non-empty 〈mantissa width〉 or
one of the exponent markers s, f, d, or l, then it represents
an inexact number, but does not necessarily represent a
flonum.

3.3. Read syntax

The read syntax describes the syntax of syntactic datums
in terms of a sequence of 〈lexeme〉s, as defined in the lexical
syntax.

Syntactic datums include the lexeme datums described in
the previous section as well as the following constructs for
forming compound structure:

• pairs and lists, enclosed by () or [] (see sec-
tion 3.3.3)

• vectors (see section 3.3.2)

Note that the sequence of characters “(+ 2 6)” is not a
syntactic datum representing the integer 8, even though
it is a base-library expression evaluating to the integer 8;
rather, it is a datum representing a three-element list, the
elements of which are the symbol + and the integers 2 and
6.

3.3.1. Formal account

The following grammar describes the syntax of syntactic
datums in terms of various kinds of lexemes defined in the
grammar in section 3.2:

〈datum〉 −→ 〈simple datum〉
| 〈compound datum〉

〈simple datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉 | 〈bytevector〉
〈list〉 −→ (〈datum〉*)

| [〈datum〉*]
| (〈datum〉+ . 〈datum〉)
| [〈datum〉+ . 〈datum〉]
| 〈abbreviation〉

〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@ | #’ | #` | #, | #,@

〈vector〉 −→ #(〈datum〉*)
〈bytevector〉 −→ #vu8(〈u8〉*)
〈u8〉 −→ 〈any 〈number〉 denoting an exact

integer in {0, . . . , 255}〉

3.3.2. Vectors

Vector datums, denoting vectors of values (see section 9.15,
are written using the notation #(〈datum〉 . . .). For exam-
ple, a vector of length 3 containing the number zero in
element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector,
and is not a base-library expression that evaluates to a
vector.

3.3.3. Pairs and lists

List and pair datums, denoting pairs and lists of values
(see section 9.11) are written using parentheses or brackets.
Matching pairs of parentheses that occur in the rules of
〈list〉 are equivalent to matching pairs of brackets.

The most general notation for Scheme pairs as syntactic
datums is the “dotted” notation (〈datum1〉 . 〈datum2〉)
where 〈datum1〉 is the representation of the value of the
car field and 〈datum2〉 is the representation of the value of
the cdr field. For example (4 . 5) is a pair whose car is
4 and whose cdr is 5. Note that (4 . 5) is the external
representation of a pair, not an expression that evaluates
to a pair.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

4. Semantic concepts 17

are equivalent notations for a list of symbols.

The general rule is that, if a dot is followed by an open
parenthesis, the dot, the open parenthesis, and the match-
ing closing parenthesis can be omitted in the external rep-
resentation.

3.3.4. Bytevectors

Bytevector datums, denoting bytevectors (see library chap-
ter 2), are written using the notation #vu8(〈u8〉 . . .),
where the 〈u8〉s represent the octets of the bytevector. For
example, a bytevector of length 3 containing the octets 2,
24, and 123 can be written as follows:

#vu8(2 24 123)

Note that this is the external representation of a bytevec-
tor, and is not an expression that evaluates to a bytevector.

3.3.5. Abbreviations

’〈datum〉
`〈datum〉
,〈datum〉
,@〈datum〉
#’〈datum〉
#`〈datum〉
#,〈datum〉
#,@〈datum〉

Each of these is an abbreviation:
’〈datum〉 for (quote 〈datum〉),
`〈datum〉 for (quasiquote 〈datum〉),
,〈datum〉 for (unquote 〈datum〉),
,@〈datum〉 for (unquote-splicing 〈datum〉),
#’〈datum〉 for (syntax 〈datum〉),
#`〈datum〉 for (quasisyntax 〈datum〉),
#,〈datum〉 for (unsyntax 〈datum〉), and
#,@〈datum〉 for (unsyntax-splicing 〈datum〉).

4. Semantic concepts

4.1. Programs and libraries

A Scheme program consists of a top-level program together
with a set of libraries, each of which defines a part of the
program connected to the others through explicitly spec-
ified exports and imports. A library consists of a set of
export and import specifications and a body, which con-
sists of definitions, and expressions; a top-level program
is similar to a library, but has no export specifications.
Chapters 6 and 7 describe the syntax and semantics of li-
braries and top-level programs, respectively. Subsequent
chapters describe various standard libraries provided by a

Scheme system. In particular, chapter 9 describes a base
library that defines many of the constructs traditionally
associated with Scheme.

The division between the base library and other standard
libraries is based on use, not on construction. In particular,
some facilities that are typically implemented as “primi-
tives” by a compiler or run-time libraries rather than in
terms of other standard procedures or syntactic forms are
not part of the base library, but are defined in separate
libraries. Examples include the fixnums and flonums li-
braries, the exceptions and conditions libraries, and the
libraries for records.

4.2. Variables, syntactic keywords, and re-
gions

In a library body, an identifier may name a type of syntax,
or it may name a location where a value can be stored.
An identifier that names a type of syntax is called a syn-
tactic keyword and is said to be bound to that syntax. An
identifier that names a location is called a variable and is
said to be bound to that location. The set of all visible
bindings in effect at some point in a top-level program or
library body is known as the environment in effect at that
point. The value stored in the location to which a variable
is bound is called the variable’s value. By abuse of termi-
nology, the variable is sometimes said to name the value or
to be bound to the value. This is not quite accurate, but
confusion rarely results from this practice.

Certain expression types are used to create new kinds of
syntax and to bind syntactic keywords to those new syn-
taxes, while other expression types create new locations
and bind variables to those locations. These expression
types are called binding constructs. Scheme has two kinds
of binding constructs: A definition binds a variable in a
top-level program or library body. All other binding con-
structs create bindings that are only locally visible in the
form that creates them. Variable definitions are created
by define forms (see section 9.2), and definitions for syn-
tactic keywords are created by define-syntax forms (see
section 9.3).

The most fundamental of the local variable binding con-
structs is the lambda expression, because all other lo-
cal variable binding constructs can be explained in terms
of lambda expressions. The other variable binding con-
structs are let, let*, letrec*, letrec, let-values,
let*-values, do, and case-lambda expressions (see sec-
tions 9.5.2, 9.5.6, 9.18, and library section 13.2). The con-
structs in the base library that bind syntactic keywords are
listed in section 9.20. Local bindings can also be created in
the form of internal define and define-syntax forms that
appear inside another form rather than at the top level of
a program or a library body.

18 Revised5.92 Scheme

Scheme is a statically scoped language with block struc-
ture. To each place in a top-level program or library body
where an identifier is bound there corresponds a region of
code within which the binding is visible. The region is
determined by the particular binding construct that estab-
lishes the binding; if the binding is established by a lambda

expression, for example, then its region is the entire lambda
expression. Every mention of an identifier refers to the
binding of the identifier that established the innermost of
the regions containing the use. If there is no binding of
the identifier whose region contains the use, then the use
refers to the binding for the variable in the top level en-
vironment of the library body or a binding imported from
another library. (See chapter 6.) If there is no binding for
the identifier, it is said to be unbound.

4.3. Exceptional situations

A variety of exceptional situations are distinguished in this
report, among them violations of syntax, violations of a
procedure’s specification, violations of implementation re-
strictions, and exceptional situations in the environment.
When an exception is raised, an object is provided that de-
scribes the nature of the exceptional situation. The report
uses the condition system described in library section 6.2
to describe exceptional situations, classifying them by con-
dition types.

For most of the exceptional situations described in this re-
port, portable programs cannot rely upon the exception
being continuable at the place where the situation was de-
tected. For those exceptions, the exception handler that
is invoked by the exception should not return. In some
cases, however, continuing is permissible; the handler may
return. See library section 6.1.

An implementation restriction is a limitation imposed by
an implementation. Implementations are required to raise
an exception when they are unable to continue correct ex-
ecution of a correct program due to some implementation
restriction.

Some possible implementation restrictions such as the lack
of representations for NaNs and infinities (see section 9.9.2)
are anticipated by this report, and implementations must
raise an exception of the appropriate condition type if they
encounter such a situation.

Implementation restrictions not explicitly covered in this
report are discouraged, and implementations are required
to report violations of implementation restrictions. For
example, an implementation may raise an exception with
condition type &implementation-restriction if it does
not have enough storage to run a program.

4.4. Argument checking

Many procedures and forms specified in this report or as
part of a standard library only accept arguments of spe-
cific types or adhering to other restrictions. These restric-
tions imply responsibilities for both the programmer and
the implementation of the specified forms and procedures.
Specifically, the programmer is responsible for ensuring
that the arguments passed indeed adhere to the restric-
tions described in the specification. The implementation is
responsible for checking that the restrictions in the speci-
fication are indeed met, to the extent that it is reasonable,
possible and necessary to allow the specified operation to
complete successfully.

It is not always possible for an implementation to com-
pletely check the restrictions set forth in the specifications.
Specifically, if an operation is specified to accept a proce-
dure with specific properties, checking of these properties is
undecidable in general. Moreover, some operations accept
both list arguments and procedures that are called by these
operations. As lists are mutable in programs that make use
of the (r6rs mutable-pairs) library (see library chap-
ter 16), an argument that is a list when the operation starts
may be mutated by the passed procedure so that it becomes
a non-list during the execution of the operation. Also, the
procedure might escape to a different continuation, pre-
venting the operation to perform more checks. Even if not,
requiring the operation to check that the argument is a list
after each call to such a procedure would be impractical.
Furthermore, some operations that accept list arguments
only need to traverse the lists partially to perform their
function—requiring the implementation to check that the
arguments are lists would be impractical or potentially vi-
olate reasonable performance assumptions. For these rea-
sons, the programmer’s obligations may exceed the check-
ing obligations of the implementation. Implementations
are, however, encouraged to perform as much checking as
possible and give detailed feedback about violations.

When an implementation detects a violation of an argu-
ment specification at run time, it must either raise an ex-
ception with condition type &violation, or abort the pro-
gram in a way consistent with the safety of execution as
described in the next section.

4.5. Safety

As defined by this document, the Scheme programming
language is safe in the following sense: If a Scheme pro-
gram is said to be safe, then its execution cannot go so
badly wrong as to crash or to continue to execute while
behaving in ways that are inconsistent with the semantics
described in this document, unless said execution first en-
counters some implementation restriction or other defect

4. Semantic concepts 19

in the implementation of Scheme that is executing the pro-
gram.

Violations of an implementation restriction
must raise an exception with condition type
&implementation-restriction, as must all violations
and errors that would otherwise threaten system integrity
in ways that might result in execution that is inconsistent
with the semantics described in this document.

The above safety properties are guaranteed only for top-
level programs and libraries that are said to be safe. Im-
plementations may provide access to unsafe libraries, and
may interpret implementation-specific declarations in ways
that cannot guarantee safety.

4.6. Boolean values

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. In a conditional test, all values count
as true in such a test except for #f. This report uses the
word “true” to refer to any Scheme value except #f, and
the word “false” to refer to #f.

4.7. Multiple return values

A Scheme expression can evaluate to an arbitrary finite
number of values. These values are passed to the expres-
sion’s continuation.

Not all continuations accept any number of values: A con-
tinuation that accepts the argument to a procedure call is
guaranteed to accept exactly one value. The effect of pass-
ing some other number of values to such a continuation is
unspecified. The call-with-values procedure described
in section 9.17 makes it possible to create continuations
that accept specified numbers of return values. If the num-
ber of return values passed to a continuation created by a
call to call-with-values is not accepted by its consumer
that was passed in that call, then an exception is raised.
A more complete description of the number of values ac-
cepted by different continuations and the consequences of
passing an unexpected number of values is given in the
description of the values procedure in section 9.17.

A number of forms in the base library have sequences of ex-
pressions as subforms that are evaluated sequentially, with
the return values of all but the last expression being dis-
carded. The continuations discarding these values accept
any number of values.

4.8. Storage model

Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A

string, for example, denotes as many locations as there
are characters in the string. (These locations need not
correspond to a full machine word.) A new value may be
stored into one of these locations using the string-set!

procedure, but the string continues to denote the same
locations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section 9.6) to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them.

It is desirable for constants (i.e. the values of literal expres-
sions) to reside in read-only-memory. To express this, it is
convenient to imagine that every object that denotes loca-
tions is associated with a flag telling whether that object
is mutable or immutable. Literal constants, the strings re-
turned by symbol->string, records with no mutable fields,
and other values explicitly designated as immutable are
immutable objects, while all objects created by the other
procedures listed in this report are mutable. An attempt
to store a new value into a location that is denoted by an
immutable object should raise an exception with condition
type &assertion.

4.9. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are ‘tail calls’. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure may still return. Note that this in-
cludes calls that may be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [8]. The rules for identifying tail calls
in base-library constructs are described in section 9.22.

Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would

20 Revised5.92 Scheme

be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

5. Notation and terminology

5.1. Requirement levels

The key words “must”, “must not”, “required”, “shall”,
“shall not”, “should”, “should not”, “recommended”,
“may”, and “optional” in this document are to be inter-
preted as described in RFC 2119 [4]. Specifically:

must This word means that a statement is an absolute
requirement of the specification.

must not This phrase means that a statement is an ab-
solute prohibition of the specification.

should This word, or the adjective “recommended”, mean
that valid reasons max exist in particular circum-
stances to ignore a statement, but that the implica-
tions must be understood and weighed before choosing
a different course.

should not This phrase, or the phrase “not recom-
mended”, mean that valid reasons max exist in partic-
ular circumstances when the behavior of a statement
is acceptable, but that the implications must be un-
derstood and weighed before choosing the course de-
scribed by the statement.

may This word, or the adjective “optional”, mean that an
item is truly optional.

5.2. Entry format

The chapters describing bindings in the base library and
the standard libraries are organized into entries. Each en-
try describes one language feature or a group of related
features, where a feature is either a syntactic construct or
a built-in procedure. An entry begins with one or more
header lines of the form

template category

If category is “syntax”, the entry describes a special syn-
tactic form, and the template gives the syntax of the form.
Even though the template is written in a notation similar
to a right-hand side of the BNF rules in chapter 3, it de-
scribes the set of forms equivalent to the forms matching
the template as syntactic datums.

Components of the form described by a template are des-
ignated by syntactic variables, which are written using an-
gle brackets, for example, 〈expression〉, 〈variable〉. Case
is insignificant in syntactic variables. Syntactic variables
denote other forms, or, in some cases, sequences of them.
A syntactic variable may refer to a non-terminal in the
grammar for syntactic datums, in which case only forms
matching that non-terminal are permissible in that posi-
tion. For example, 〈expression〉 stands for any form which
is a syntactically valid expression. Other non-terminals
that are used in templates will be defined as part of the
specification.

The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.

It is a syntax violation if a component of a form does not
have the shape specified by a template—an exception with
condition type &syntax is raised at expansion time.

Descriptions of syntax may express other restrictions on
the components of a form. Typically, such a restriction is
formulated as a phrase of the form “〈x〉 must be a . . . ”.
As with implicit restrictions, such a phrase means that
an exception with condition type &syntax is raised if the
component does not meet the restriction.

If category is “procedure”, then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Parameter names in the template are italicized .
Thus the header line

(vector-ref vector k) procedure

indicates that the built-in procedure vector-ref takes two
arguments, a vector vector and an exact non-negative in-
teger k (see below). The header lines

(make-vector k) procedure
(make-vector k fill) procedure

indicate that the make-vector procedure takes either
one or two arguments. The parameter names are case-
insensitive: Vector is the same as vector .

As with syntax templates, an ellipsis . . . at the end of a
header line, as in

(= z1 z2 z3 . . .) procedure

5. Notation and terminology 21

indicates that the procedure takes arbitrarily many argu-
ments of the same type as specified for the last parameter
name. In this case, = accepts two or more arguments that
must all be complex numbers.

A procedure that is called with an argument that it is not
specified to handle raises an exception with condition type
&assertion. Also, if the number of arguments provided in
a procedure call does not match any argument count spec-
ified for the called procedure, an exception with condition
type &assertion is raised.

For succinctness, we follow the convention that if a param-
eter name is also the name of a type, then the correspond-
ing argument must be of the named type. For example,
the header line for vector-ref given above dictates that
the first argument to vector-ref must be a vector. The
following naming conventions imply type restrictions:

obj any object
z complex number
x real number
y real number
q rational number
n integer
k exact non-negative integer
octet exact integer in {0, . . . , 255}
byte exact integer in {-128, . . . , 127}
char character (see section 9.13)
pair pair (see section 9.11)
vector vector (see section 9.15)
string string (see section 9.14)
condition condition (see library section 6.2)
bytevector bytevector (see library chapter 2)
proc procedure (see section 1.5)

Other type restrictions are expressed through parameter
naming conventions that are described in specific chapters.
For example, library chapter 9 uses a number of special
parameter variables for the various subsets of the numbers.

With the listed type restrictions, the programmer’s respon-
sibility of ensuring that the corresponding argument is of
the specified type corresponds to the implementation’s re-
sponsibility of checking for that type, see section 4.4.

The list parameter naming conventions means that it is
the programmer’s responsibility to pass a list argument
(see section 9.11). It is the implementation’s responsibility
to check that the argument is appropriately structured for
the operation to perform its function, to the extent that
this is possible and reasonable. The implementation must
at least check that the argument is either an empty list or
a pair.

Descriptions of procedures may express other restrictions
on the arguments of a procedure. Typically, such a restric-
tion is formulated as a phrase of the form “x must be a . . . ”.

(or otherwise using the word “must”.) If the description
does not explicitly distinguish between the programmer’s
and the implementation’s responsibilities, the restrictions
describe both the programmer’s responsibility, who must
ensure that an appropriate argument is passed, and the im-
plementation’s responsibilities, which must check that the
argument is appropriate.

If category is something other than “syntax” and “proce-
dure”, then the entry describes a non-procedural value, and
the category describes the type of that value. The header
line

&who condition type

indicates that &who is a condition type.

The description of an entry occasionally states that it is
the same as another entry. This means that both entries
are equivalent. Specifically, it means that if both entries
have the same name and are thus exported from different
libraries, the entries from both libraries can be imported
under the same name without conflict.

5.3. Evaluation examples

The symbol “=⇒” used in program examples can be read
“evaluates to”. For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that may be represented exter-
nally by the sequence of characters “40”. See section 3.3
for a discussion of external representations of objects.

The “=⇒” symbol is also used when the evaluation of an
expression raises an exception. For example,

(integer->char #xD800) =⇒ &assertion exception

means that the evaluation of the expression
(integer->char #xD800) causes an exception with
condition type &assertion to be raised.

5.4. Unspecified behavior

If the value of an expression is said to be “unspecified”,
then the expression must evaluate without raising an ex-
ception, but the values returned depend on the imple-
mentation; this report explicitly does not say what values
should be returned.

Some expressions are specified to return the unspecified
value, which is a special value returned by the unspecified

22 Revised5.92 Scheme

procedure. (See section 9.8.) In this case, the return value
is meaningless, and programmers are discouraged from re-
lying on its specific nature.

5.5. Exceptional situations

When speaking of an exceptional situation (see section 4.3),
this report uses the phrase “an exception is raised” to in-
dicate that implementations must detect the situation and
report it to the program through the exception system de-
scribed in library chapter 6.

Several variations on “an exception is raised” using the
keywords described in section 5.1 are possible, in particu-
lar “an exception must be raised” (equivalent to “an ex-
ception is raised”), “an exception should be raised”, and
“an exception may be raised”.

This report uses the phrase “an exception with condition
type t” to indicate that the object provided with the ex-
ception is a condition object of the specified type.

The phrase “a continuable exception is raised” indicates an
exceptional situation that permits the exception handler to
return, thereby allowing program execution to continue at
the place where the original exception occurred. See library
section 6.1.

For example, an exception with condition type &assertion
is raised if a procedure is passed an argument that the
procedure is not explicitly specified to handle, even though
such domain exceptions are not always mentioned in this
report.

5.6. Naming conventions

By convention, the names of procedures that store values
into previously allocated locations (see section 4.8) usually
end in “!”. Such procedures are called mutation proce-
dures. By convention, the value returned by a mutation
procedure is the unspecified value (see section 9.8), but
this convention is not always followed.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

By convention, the names of condition types usually end
in “&”.

By convention, the names of predicates—procedures that
always return a boolean value—end in “?” when the name
contains any letters; otherwise, the predicate’s name does
not end with a question mark.

The components of compound names are usually separated
by “-” In particular, prefixes that are actual words or can

be pronounced as though they were actual words are fol-
lowed by a hyphen, except when the first character follow-
ing the hyphen would be something other than a letter, in
which case the hyphen is omitted. Short, unpronounceable
prefixes (“fx” and “fl”) are not followed by a hyphen.

5.7. Syntax violations

Scheme implementations conformant with this report must
detect violations of the syntax. A syntax violation is an er-
ror with respect to the syntax of library bodies, top-level
bodies, or the “syntax” entries in the specification of the
base library or the standard libraries. Moreover, attempt-
ing to assign to an immutable variable (i.e., the variables
exported by a library; see section 6.1) is also considered a
syntax violation.

If a top-level or library form is not syntactically correct,
then the execution of that top-level program or library
must not be allowed to begin.

6. Libraries

The library system presented here is designed to let pro-
grammers share libraries, i.e., code that is intended to be
incorporated into larger programs, and especially into pro-
grams that use library code from multiple sources. The
library system supports macro definitions within libraries,
allows macro exports, and distinguishes the phases in
which definitions and imports are needed. This chapter de-
fines the notation for libraries and a semantics for library
expansion and execution.

Libraries address the following specific goals:

• Separate compilation and analysis; no two libraries
have to be compiled at the same time (i.e., the mean-
ings of two libraries cannot depend on each other cycli-
cally, and compilation of two different libraries cannot
rely on state shared across compilations), and signif-
icant program analysis can be performed without ex-
amining a whole program.

• Independent compilation/analysis of unrelated li-
braries, where “unrelated” means that neither de-
pends on the other through a transitive closure of im-
ports.

• Explicit declaration of dependencies, so that the
meaning of each identifier is clear at compile time, and
so that there is no ambiguity about whether a library
needs to be executed for another library’s compile time
and/or run time.

• Namespace management, to help prevent name con-
flicts.

6. Libraries 23

It does not address the following:

• Mutually dependent libraries.

• Separation of library interface from library implemen-
tation.

• Code outside of a library (e.g., 5 by itself as a pro-
gram).

• Local modules and local imports.

6.1. Library form

A library declaration contains the following elements:

• a name for the library (possibly with versioning),

• a list of exports, which name a subset of the bindings
defined within or imported into the library,

• a list of import dependencies, where each dependency
specifies:

– the imported library’s name,

– the relevant levels, e.g., expand or run time, and

– the subset of the library’s exports to make avail-
able within the importing library, and the local
names to use within the importing library for
each of the library’s exports, and

• a library body, consisting of a sequence of definitions
followed by a sequence of expressions.

A library definition must have the following form:

(library 〈library name〉
(export 〈export spec〉 ...)

(import 〈import spec〉 ...)

〈library body〉)

The 〈library name〉 specifies the name of the library,
the export form specifies the exported bindings, and
the import form specifies the imported bindings. The
〈library body〉 specifies the set of definitions, both for local
(unexported) and exported bindings, and the set of initial-
ization expressions to be evaluated for their effects. The
exported bindings may be defined within the library or im-
ported into the library.

An identifier can be imported from two or more libraries
or for two levels from the same library only if the bind-
ing exported by each library is the same (i.e., the binding
is defined in one library, and it arrives through the im-
ports only by exporting and re-exporting). Otherwise, no
identifier can be imported multiple times, defined multi-
ple times, or both defined and imported. No identifiers are
visible within a library except for those explicitly imported
into the library or defined within the library.

A 〈library name〉 has the following form:

(〈identifier1〉 〈identifier2〉 ... 〈version〉)

where 〈version〉 is empty or has the following form:

(〈subversion〉 ...)

Each 〈subversion〉 must be an exact nonnegative integer.
An empty 〈version〉 is equivalent to ().

Each 〈import spec〉 specifies a set of bindings to be im-
ported into the library, the levels at which they are to be
available, and the local names by which they are to be
known. An 〈import spec〉 must be one of the following:

〈import set〉
(for 〈import set〉 〈import level〉 ...)

An 〈import level〉 is one of the following:

run

expand

(meta 〈level〉)

where 〈level〉 is an exact integer.

As an 〈import level〉, run is an abbreviation for (meta 0),
and expand is an abbreviation for (meta 1). Levels and
phases are discussed in section 6.2.

An 〈import set〉 names a set of bindings from another li-
brary, and possibly specifies local names for the imported
bindings. It must be one of the following:

〈library reference〉
(only 〈import set〉 〈identifier〉 ...)

(except 〈import set〉 〈identifier〉 ...)

(prefix 〈import set〉 〈identifier〉)
(rename 〈import set〉 (〈identifier〉 〈identifier〉) ...)

A 〈library reference〉 identifies a library by its name and
optionally by its version. It has the following form:

(〈identifier1〉 〈identifier2〉 ... 〈version reference〉)

A 〈version reference〉 is empty or has the following form:

(〈subversion reference〉 ...)

An empty 〈version reference〉 is equivalent to ().

A 〈subversion reference〉 has one of the following forms:

〈subversion〉
〈subversion condition〉

where a 〈subversion condition〉 must have one of these
forms:

(>= 〈subversion〉)
(<= 〈subversion〉)
(and 〈subversion condition〉 ...)

(or 〈subversion condition〉 ...)

(not 〈subversion condition〉)

24 Revised5.92 Scheme

The sequence of identifiers in the importing library’s
〈library reference〉 must match the sequence of identifiers
in the imported library’s 〈library name〉. The importing
library’s 〈version reference〉 specifies a predicate on a pre-
fix of the imported library’s 〈version〉. Each integer must
match exactly and each condition has the expected mean-
ing. Everything beyond the prefix specified in the version
reference matches unconditionally. When more than one
library is identified by a library reference, the choice of li-
braries is determined in some implementation-dependent
manner.

To avoid problems such as incompatible types and repli-
cated state, two libraries whose library names contain the
same sequence of identifiers but whose versions do not
match cannot co-exist in the same program.

By default, all of an imported library’s exported bind-
ings are made visible within an importing library using
the names given to the bindings by the imported library.
The precise set of bindings to be imported and the names
of those bindings can be adjusted with the only, except,
prefix, and rename forms as described below.

• An only form produces a subset of the bindings
from another 〈import set〉, including only the listed
〈identifier〉s. The included 〈identifier〉s must be in the
original 〈import set〉.

• An except form produces a subset of the bindings
from another 〈import set〉, including all but the listed
〈identifier〉s. All of the excluded 〈identifier〉s must be
in the original 〈import set〉.

• A prefix form adds the 〈identifier〉 prefix to each
name from another 〈import set〉.

• A rename form, (rename (〈oldid〉 〈newid〉) ...), re-
moves the bindings for 〈oldid〉 ... to form an in-
termediate 〈import set〉, then adds the bindings back
for the corresponding 〈newid〉 ... to form the final
〈import set〉. Each 〈oldid〉 must be in the original
〈import set〉, each 〈newid〉 must not be in the interme-
diate 〈import set〉, and the 〈newid〉s must be distinct.

It is a syntax violation if a constraint given above is not
met.

An 〈export spec〉 names a set of imported and locally de-
fined bindings to be exported, possibly with different exter-
nal names. An 〈export spec〉 must have one of the following
forms:

〈identifier〉
(rename (〈identifier〉 〈identifier〉) ...)

In an 〈export spec〉, an 〈identifier〉 names a single bind-
ing defined within or imported into the library, where the
external name for the export is the same as the name of

the binding within the library. A rename spec exports the
binding named by the first 〈identifier〉 in each pair, using
the second 〈identifier〉 as the external name.

The 〈library body〉 of a library form consists of forms
that are classified into definitions , and expressions . Which
forms belong to which class depends on the imported li-
braries and the result of expansion—see chapter 8. Gen-
erally, forms that are not definitions (see section 9.2 for
definitions available through the base library) are expres-
sions.

A 〈library body〉 is like a 〈body〉 (see section 9.4) except
that 〈library body〉s need not include any expressions. It
must have the following form:

〈definition〉 ... 〈expression〉 ...

When base-library begin forms occur in a library body
prior to the first (non-begin) expression, they are spliced
into the body; see section 9.5.7. Some or all of the library
body, including portions wrapped in begin forms, may be
specified by a syntactic abstraction (see section 6.3.2).

The transformer expressions and transformer bindings are
created from left to right, as described in chapter 8. The
variable-definition right-hand-side expressions are evalu-
ated from left to right, as if in an implicit letrec*, and
the body expressions are also evaluated from left to right
after the variable-definition right-hand-side expressions. A
fresh location is created for each exported variable and ini-
tialized to the value of its local counterpart. The effect of
returning twice to the continuation of the last body expres-
sion is unspecified.

The names library, export, import, for, run, expand,
meta, import, export, only, except, prefix, rename,
and, or, >=, and <= appearing in the library syntax are
part of the syntax and are not reserved, i.e, the same can
be used for other purposes within the library or even ex-
ported from or imported into a library with different mean-
ings, without affecting their use in the library form.

Bindings defined with a library are not visible in code out-
side of the library, unless the bindings are explicitly ex-
ported from the library. An exported macro may, however,
implicitly export an otherwise unexported identifier defined
within or imported into the library. That is, it may insert a
reference to that identifier into the output code it produces.

All explicitly exported variables are immutable in both the
exporting and importing libraries. It is thus a syntax vi-
olation if an explicitly exported variable appears on the
left-hand side of a set! expression, either in the exporting
or importing libraries. All other variables defined within a
library are mutable.

All implicitly exported variables are also immutable in both
the exporting and importing libraries. It is thus a syn-
tax violation if a variable appears on the left-hand side of

6. Libraries 25

a set! expression in any code produced by an exported
macro outside of the library in which the variable is de-
fined. It is also a syntax violation if a reference to an
assigned variable appears in any code produced by an ex-
ported macro outside of the library in which the variable
is defined, where an assigned variable is one that appears
on the left-hand side of a set! expression in the exporting
library.

Note: The asymmetry in the prohibitions against assignments

to explicitly and implicitly exported variables reflects the fact

that the violation can be determined for implicitly exported

variables only when the importing library is expanded.

6.2. Import and export levels

Every library can be characterized by expand-time infor-
mation (minimally, its imported libraries, a list of the ex-
ported keywords, a list of the exported variables, and code
to evaluate the transformer expressions) and run-time in-
formation (minimally, code to evaluate the variable def-
inition right-hand-side expressions, and code to evaluate
the body expressions). The expand-time information must
be available to expand references to any exported binding,
and the run-time information must be available to evaluate
references to any exported variable binding.

Expanding a library may require run-time information
from another library. For example, if a library provides
functions that are called by another library’s macros dur-
ing expansion, then the former library must be run when
expanding the latter. The former may not be needed when
the latter is eventually run as part of a program, or it may
be needed for the latter’s run time, too.

A phase is a time at which the expressions within a li-
brary are evaluated. Within a library body, top-level ex-
pressions and the right-hand sides of define forms are
evaluated at run time, i.e., phase 0, and the right-hand
sides of define-syntax forms are evaluated at expand
time, i.e., phase 1. When define-syntax, let-syntax,
or letrec-syntax forms appear within code evaluated at
phase n, the right-hand sides are evaluated as phase n + 1
expressions.

These phases are relative to the phase in which the library
itself is used. An instance of a library corresponds to an
evaluation of its definitions and expressions in a particular
phase relative to another library. For example, if a top-level
expression in a library L1 refers to an export from another
library L0, then it refers to the export from an instance of
L0 at phase 0 (relative to the phase of L1). But if a phase
1 expression within L1 refers to the same binding from L0,
then it refers to the export from an instance of L0 at phase
1 (relative to the phase of L1).

A level is a lexical property of an identifier that determines
in which phases it can be referenced. The level for each

identifier bound by a definition within a library is 0; that is,
the identifier can be referenced only by phase 0 expressions
within the library. The level for each imported binding
is determined by the enclosing for form of the import

in the importing library, in addition to the levels of the
identifier in the exporting library. Import and export levels
are combined by pairwise addition of all level combinations.
For example, references to an imported identifier exported
for levels pa and pb and imported for levels qa, qb, and qc

are valid at levels pa + qa, pa + qb, pa + qc, pb + qa, pb + qb,
and pb + qc. An 〈import set〉 without an enclosing for is
equivalent to (for 〈import set〉 run), which is the same
as (for 〈import set〉 (meta 0)).

The export level of an exported binding is 0 for all bindings
that are defined within the exporting library. The export
levels of a reexported binding, i.e., an export imported from
another library, are the same as the effective import levels
of that binding within the reexporting library.

For the libraries defined in the library report, the ex-
port level is 0 for nearly all bindings. The exceptions are
syntax-rules and identifier-syntax from the (r6rs

base) library, which are exported with level 1, and all
bindings from the composite (r6rs) library (see library
chapter 14), which are exported with levels 0 and 1.

Rationale: The (r6rs) library is intended as a convenient

import for libraries where fine control over imported bindings

is not necessary or desirable. The (r6rs) library exports all

bindings for expand as well as run so that it is convenient for

writing syntax-case macros as well as run-time code.

Macro expansion within a library can introduce a reference
to an identifier that is not explicitly imported into the li-
brary. In that case, the phase of the reference must match
the identifier’s level as shifted by the difference between the
phase of the source library (i.e., the library that supplied
the identifier’s lexical context) and the library that encloses
the reference. For example, suppose that expanding a li-
brary invokes a macro transformer, and the evaluation of
the macro transformer refers to an identifier that is ex-
ported from another library (so the phase 1 instance of the
library is used); suppose further that the value of the bind-
ing is a syntax object representing an identifier with only a
level-n binding; then, the identifier must be used only in a
phase n+1 expression in the library being expanded. This
combination of level and phases is why negative levels on
identifiers can be useful, even though libraries exist only at
non-negative phases.

If any of a library’s definitions are referenced at phase 0
in the expanded form of a program, then an instance of
the referenced library is created for phase 0 before the pro-
gram’s definitions and expressios are evaluated. This rule
applies transitively: if the expanded form of one library ref-
erences at phase 0 an identifier from another library, then
before the referencing library is instantiated at phase n, the

26 Revised5.92 Scheme

referenced library must be instantiated at phase n. When
an identifier is referenced at any phase n greater than 0, in
contrast, then the defining library is instantiated at phase
n at some unspecified time before the reference is evalu-
ated.

An implementation is allowed to distinguish instances of
a library for different phases or to use an instance at any
phase as an instance at any other phase. An implementa-
tion is further allowed to start each expansion of a library

form by removing all instances of all libraries in all phases
above 0. An implementation is allowed to create instances
of more libraries at more phases than required to satisfy
references. When an identifier appears as an expression
in a phase that is inconsistent with the identifier’s level,
then an implementation may raise an exception either at
expand time or run time, or it may allow the reference.
Thus, a portable library must reference identifiers only in
phases consistent with the declared levels, and the library’s
meaning must not depend on whether the instances of a li-
brary are distinguished or shared across phases or library
expansions.

Rationale: Opinions vary on how libraries should be instan-
tiated and initialized during the expansion and execution of li-
brary bodies, whether library instances should be distnguished
across phases, and whether levels should be declared so that
they constrain identifier uses to particular phases. This report
therefore leaves considerable latitude to implementations, while
attempting to provide enough guarantees to make portable li-
braries practical.

In particular, if a program and its libraries avoid the (r6rs) and

(r6rs syntax-case) libraries, and if the program and libraries

never use the for import form, then the program does not de-

pend on whether instances are distinguished across phases, and

the phase of an identifier use cannot be inconsistent with the

identifier’s level.

6.3. Primitive syntax

After the import form within a library form, the forms
that constitute a library body depend on the libraries that
are imported. In particular, imported syntactic keywords
determine most of the available forms and whether each
form is a definition or expression. A few form types are al-
ways available independent of imported libraries, however,
including constant literals, variable references, procedure
calls, and macro uses.

6.3.1. Primitive expression types

The entries in this section all describe expressions, which
may occur in the place of 〈expression〉 syntactic variables.
See also section 9.5

Constant literals

〈constant〉 syntax

Numerical constants, string constants, character constants,
and boolean constants evaluate “to themselves”.

"abc" =⇒ "abc"

145932 =⇒ 145932

#t =⇒ #t

As noted in section 4.8, the value of a literal expression
may be immutable.

Variable references

〈variable〉 syntax

An expression consisting of a variable (section 4.2) is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is a syntax violation to reference an unbound
variable.

; These examples assume the base library

; has been imported.

(define x 28)

x =⇒ 28

Procedure calls

(〈operator〉 〈operand1〉 . . .) syntax

A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. A form in an expression
context is a procedure call if 〈operator〉 is not an identifier
bound as a syntactic keyword.

When a procedure call is evaluated, the operator and
operand expressions are evaluated (in an unspecified or-
der) and the resulting procedure is passed the resulting
arguments.

; these examples assume the base library

; has been imported

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

If the value of 〈operator〉 is not a procedure, an exception
with condition type &assertion is raised.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

6. Libraries 27

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the form () is a legitimate

expression. In Scheme, expressions written as list/pair forms

must have at least one subexpression, so () is not a syntactically

valid expression.

6.3.2. Macros

Scheme libraries can define and use new derived expressions
and definitions called syntactic abstractions or macros. A
syntactic abstraction is created by binding a keyword to
a macro transformer or, simply, transformer. The trans-
former determines how a use of the macro is transcribed
into a more primitive form.

Macro uses typically have the form:

(〈keyword〉 〈datum〉 . . .)

where 〈keyword〉 is an identifier that uniquely determines
the type of form. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number
of 〈datum〉s and the syntax of each depends on the syn-
tactic abstraction. Macro uses can also take the form of
improper lists, singleton identifiers, or set! forms, where
the second subform of the set! is the keyword (see library
section 10.3:

(〈keyword〉 〈datum〉 〈datum〉)
〈keyword〉
(set! 〈keyword〉 〈datum〉)

The macro definition facility consists of two parts:

• A set of forms (define-syntax described in sec-
tion 9.3, let-syntax and letrec-syntax described
in section 9.20) used to create bindings for keywords,
associate them with macro transformers, and control
the scope within which they are visible, and

• a facility (syntax-rules; see section 9.21) for creat-
ing transformers via a pattern language, and a facil-
ity (syntax-case; see library chapter 10) for creating
transformers via a pattern language that permits the
use of arbitrary Scheme code.

Keywords occupy the same name space as variables. That
is, within the same scope, an identifier can be bound as
a variable or keyword, or neither, but not both, and local
bindings of either kind may shadow other bindings of either
kind.

Macros defined using syntax-rules are “hygienic” and
“referentially transparent” and thus preserve Scheme’s lex-
ical scoping [28, 27, 3, 10, 17]:

• If a macro transformer inserts a binding for an iden-
tifier (variable or keyword), the identifier is in effect
renamed throughout its scope to avoid conflicts with
other identifiers.

• If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regardless
of any local bindings that may surround the use of the
macro.

Macros defined using the syntax-case facility are also hy-
gienic unless datum->syntax (see library section 10.6) is
used.

6.4. Examples

Examples for various 〈import spec〉s and 〈export spec〉s:

(library (stack)

(export make push! pop! empty!)

(import (r6rs))

(define (make) (list ’()))

(define (push! s v) (set-car! s (cons v (car s))))

(define (pop! s) (let ([v (caar s)])

(set-car! s (cdar s))

v))

(define (empty! s) (set-car! s ’())))

(library (balloons)

(export make push pop)

(import (r6rs))

(define (make w h) (cons w h))

(define (push b amt)

(cons (- (car b) amt) (+ (cdr b) amt)))

(define (pop b) (display "Boom! ")

(display (* (car b) (cdr b)))

(newline)))

(library (party)

;; Total exports:

;; make, push, push!, make-party, pop!

(export (rename (balloon:make make)

(balloon:push push))

push!

make-party

(rename (party-pop! pop!)))

(import (r6rs)

(only (stack) make push! pop!) ; not empty!

(prefix (balloons) balloon:))

;; Creates a party as a stack of balloons,

;; starting with two balloons

(define (make-party)

(let ([s (make)]) ; from stack

(push! s (balloon:make 10 10))

(push! s (balloon:make 12 9))

s))

(define (party-pop! p)

(balloon:pop (pop! p))))

28 Revised5.92 Scheme

(library (main)

(export)

(import (r6rs) (party))

(define p (make-party))

(pop! p) ; displays "Boom! 108"

(push! p (push (make 5 5) 1))

(pop! p)) ; displays "Boom! 24"

Examples for macros and phases:

(library (my-helpers id-stuff)

(export find-dup)

(import (r6rs))

(define (find-dup l)

(and (pair? l)

(let loop ((rest (cdr l)))

(cond

[(null? rest) (find-dup (cdr l))]

[(bound-identifier=? (car l) (car rest))

(car rest)]

[else (loop (cdr rest))])))))

(library (my-helpers values-stuff)

(export mvlet)

(import (r6rs) (for (my-helpers id-stuff) expand))

(define-syntax mvlet

(lambda (stx)

(syntax-case stx ()

[([(id ...) expr] body0 body ...)

(not (find-dup (syntax (id ...))))

(syntax

(call-with-values

(lambda () expr)

(lambda (id ...) body0 body ...)))]))))

(library (let-div)

(export let-div)

(import (r6rs)

(my-helpers values-stuff)

(r6rs r5rs))

(define (quotient+remainder n d)

(let ([q (quotient n d)])

(values q (- n (* q d)))))

(define-syntax let-div

(syntax-rules ()

[(n d (q r) body0 body ...)

(mvlet [(q r) (quotient+remainder n d)]

body0 body ...)])))

7. Top-level programs

A top-level program specifies an entry point for defining and
running a Scheme program. A top-level program specifies
a set of libraries to import and code to run. Through the

imported libraries, whether directly or through the tran-
sitive closure of importing, a top-level program defines a
complete Scheme program.

Top-level programs follow the convention of many common
platforms of accepting a list of string command-line argu-
ments that may be used to pass data to the script.

7.1. Top-level program syntax

A top-level program is a delimited piece of text, typically
a file, that follows the following syntax:

〈toplevel program〉 −→ 〈import form〉 〈toplevel body〉
〈import form〉 −→ (import 〈import spec〉*)
〈toplevel body〉 −→ 〈toplevel body form〉*
〈toplevel body form〉 −→ 〈definition〉 | 〈expression〉

The rules for 〈toplevel program〉 specify syntax at the form
level.

The 〈import form〉 is identical to the import clause in li-
braries (see section 6.1), and specifies a set of libraries
to import. A 〈toplevel body〉 is like a 〈library body〉
(see section 6.1), except that definitions and expressions
may occur in any order. Thus, the syntax specified by
〈toplevel body form〉 refers to the result of macro expan-
sion.

Rationale: By allowing the interleaving of definitions and ex-

pressions, top-level programs support exploratory and interac-

tive development, without imposing unnecessary organizational

overhead on code which may not be intended for reuse.

When base-library begin forms occur anywhere within a
top-level body, they are spliced into the body; see sec-
tion 9.5.7. Some or all of the top-level body, including
portions wrapped in begin forms, may be specified by a
syntactic abstraction (see section 6.3.2).

7.2. Top-level program semantics

A top-level program is executed by treating the program
similarly to a library, and invoking it. The semantics
of a top-level body may be roughly explained by a sim-
ple translation into a library body: Each 〈expression〉
that appears before a definition in the top-level body
is converted into a dummy definition (define 〈variable〉
(begin 〈expression〉 (unspecified))), where 〈variable〉
is a fresh identifier. (It is generally impossible to deter-
mine which forms are definitions and expressions without
concurrently expanding the body, so the actual translation
is somewhat more complicated; see chapter 8.)

8. Expansion process 29

On platforms that support it, a top-level program
may access its command-line arguments by calling the
command-line procedure (see library section 13.3).

8. Expansion process

Macro uses (see section 6.3.2) are expanded into core forms
at the start of evaluation (before compilation or inter-
pretation) by a syntax expander. (The set of core forms
is implementation-dependent, as is the representation of
these forms in the expander’s output.) If the expander en-
counters a syntactic abstraction, it invokes the associated
transformer to expand the syntactic abstraction, then re-
peats the expansion process for the form returned by the
transformer. If the expander encounters a core form, it re-
cursively processes the subforms, if any, and reconstructs
the form from the expanded subforms. Information about
identifier bindings is maintained during expansion to en-
force lexical scoping for variables and keywords.

To handle internal definitions, the expander processes the
initial forms in a 〈body〉 (see section 9.4) or 〈library body〉
(see section 6.1) from left to right. How the expander pro-
cesses each form encountered as it does so depends upon
the kind of form.

macro use The expander invokes the associated trans-
former to transform the macro use, then recursively
performs whichever of these actions are appropriate
for the resulting form.

define-syntax form The expander expands and evalu-
ates the right-hand-side expression and binds the key-
word to the resulting transformer.

define form The expander records the fact that the de-
fined identifier is a variable but defers expansion of the
right-hand-side expression until after all of the defini-
tions have been processed.

begin form The expander splices the subforms into the
list of body forms it is processing. (See section 9.5.7.)

let-syntax or letrec-syntax form The expander
splices the inner body forms into the list of (outer)
body forms it is processing, arranging for the key-
words bound by the let-syntax and letrec-syntax

to be visible only in the inner body forms.

expression, i.e., nondefinition The expander com-
pletes the expansion of the deferred right-hand-side
forms and the current and remaining expressions
in the body, then residualizes the equivalent of a
letrec* form from the defined variables, expanded
right-hand-side expressions, and expanded body
expressions.

Expansion of each variable definition right-hand side is de-
ferred until after all of the definitions have been seen so
that each keyword and variable reference within the right-
hand side resolves to the local binding, if any.

A definition in the sequence of forms must not define any
identifier whose binding is used to determine the meaning
of the undeferred portions of the definition or any definition
that precedes it in the sequence of forms. For example, the
bodies of the following expressions violate this restriction.

(let ()

(define define 17)

(list define))

(let-syntax ([def0 (syntax-rules ()

[(x) (define x 0)])])

(let ([z 3])

(def0 z)

(define def0 list)

(list z)))

(let ()

(define-syntax foo

(lambda (e)

(+ 1 2)))

(define + 2)

(foo))

The following do not violate the restriction.

(let ([x 5])

(define lambda list)

(lambda x x)) =⇒ (5 5)

(let-syntax ([def0 (syntax-rules ()

[(x) (define x 0)])])

(let ([z 3])

(define def0 list)

(def0 z)

(list z))) =⇒ (e)

(let ()

(define-syntax foo

(lambda (e)

(let ([+ -]) (+ 1 2))))

(define + 2)

(foo)) =⇒ -1

The implementation should treat a violation of the restric-
tion as a syntax violation.

Note that this algorithm does not directly reprocess any
form. It requires a single left-to-right pass over the defini-
tions followed by a single pass (in any order) over the body
expressions and deferred right-hand sides.

For example, in

(lambda (x)

30 Revised5.92 Scheme

(define-syntax defun

(syntax-rules ()

[((x . a) e) (define x (lambda a e))]))

(defun (even? n) (or (= n 0) (odd? (- n 1))))

(define-syntax odd?

(syntax-rules () [(n) (not (even? n))]))

(odd? (if (odd? x) (* x x) x)))

The definition of defun is encountered first, and the key-
word defun is associated with the transformer resulting
from the expansion and evaluation of the corresponding
right-hand side. A use of defun is encountered next and
expands into a define form. Expansion of the right-hand
side of this define form is deferred. The definition of odd?
is next and results in the association of the keyword odd?

with the transformer resulting from expanding and eval-
uating the corresponding right-hand side. A use of odd?
appears next and is expanded; the resulting call to not

is recognized as an expression because not is bound as a
variable. At this point, the expander completes the ex-
pansion of the current expression (the not call) and the
deferred right-hand side of the even? definition; the uses
of odd? appearing in these expressions are expanded using
the transformer associated with the keyword odd?. The
final output is the equivalent of

(lambda (x)

(letrec* ([even?

(lambda (n)

(or (= n 0)

(not (even? (- n 1)))))])

(not (even? (if (not (even? x)) (* x x) x)))))

although the structure of the output is implementation de-
pendent.

Because definitions and expressions can be interleaved in
a 〈toplevel body〉 (see chapter 7), the expander’s process-
ing of a 〈toplevel body〉 is somewhat more complicated. It
behaves as described above for a 〈body〉 or 〈library body〉
with the following exceptions. When the expander finds a
nondefinition, it defers its expansion and continues scan-
ning for definitions. Once it reaches the end of the set of
forms, it processes the deferred right-hand-side and body
expressions, then residualizes the equivalent of a letrec*

form from the defined variables, expanded right-hand-side
expressions, and expanded body expressions. For each
body expression 〈expression〉 that appears before a vari-
able definition in the body, a dummy binding is created at
the corresponding place within the set of letrec* bindings,
with a fresh temporary variable on the left-hand side and
the equivalent of (begin 〈expression〉 (unspecified)) on
the right-hand side, so that left-to-right evaluation order
is preserved. The begin wrapper allows 〈expression〉 to
evaluate to zero or more values.

9. Base library

This chapter describes Scheme’s (r6rs base) library,
which exports many of the procedure and syntax bindings
that are traditionally associated with Scheme.

Section 9.22 defines the rules that identify tail calls and
tail contexts in base-library constructs.

9.1. Base types

No object satisfies more than one of the following predi-
cates:

boolean? pair?

symbol? number?

char? string?

vector? procedure?

unspecified? null?

These predicates define the base types boolean, pair, sym-
bol, number, char (or character), string, vector, and pro-
cedure. Moreover, the empty list is a special object of its
own type, as is the unspecified value.

Note that, although there is a separate boolean type, any
Scheme value can be used as a boolean value for the pur-
pose of a conditional test; see section 4.6.

9.2. Definitions

The define forms described in this section are definitions
for value bindings and may appear anywhere other defini-
tions may appear. See section 6.1.

A 〈definition〉 must have one of the following forms:

• (define 〈variable〉 〈expression〉) This binds
〈variable〉 to a new location before assigning the
value of 〈expression〉 to it.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

• (define 〈variable〉)

This form is equivalent to

(define 〈variable〉 (unspecified))

• (define (〈variable〉 〈formals〉) 〈body〉)

〈Formals〉 must be either a sequence of zero or more
variables, or a sequence of one or more variables fol-
lowed by a space-delimited period and another vari-
able (as in a lambda expression, see section 9.5.2).
This form is equivalent to

9. Base library 31

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

• (define (〈variable〉 . 〈formal〉) 〈body〉)

〈Formal〉 must be a single variable. This form is equiv-
alent to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

• a syntax definition (see section 9.3)

9.3. Syntax definitions

Syntax definitions are established with define-syntax. A
define-syntax form is a 〈definition〉 and may appear any-
where other definitions may appear.

(define-syntax 〈variable〉 〈expression〉) syntax

This binds the keyword 〈variable〉 to the value of
〈expression〉, which must evaluate, at macro-expansion
time, to a transformer. (See library section 10.3).

Keyword bindings established by define-syntax are vis-
ible throughout the body in which they appear, except
where shadowed by other bindings, and nowhere else, just
like variable bindings established by define. All bindings
established by a set of internal definitions, whether key-
word or variable definitions, are visible within the defini-
tions themselves. For example:

(let ()

(define even?

(lambda (x)

(or (= x 0) (odd? (- x 1)))))

(define-syntax odd?

(syntax-rules ()

((odd? x) (not (even? x)))))

(even? 10)) =⇒ #t

An implication of the left-to-right processing order (sec-
tion 8) is that one internal definition can affect whether
a subsequent form is also a definition. For example, the
expression

(let ()

(define-syntax bind-to-zero

(syntax-rules ()

((bind-to-zero id) (define id 0))))

(bind-to-zero x)

x) =⇒ 0

This behavior is irrespective of any binding for
bind-to-zero that might appear outside of the let ex-
pression.

9.4. Bodies and sequences

The body 〈body〉 of a lambda, let, let*, let-values,
let*-values, letrec*, letrec expression or that of a def-
inition with a body has the following form:

〈definition〉 ... 〈sequence〉

〈Sequence〉 has the following form:

〈expression1〉 〈expression2〉 ...

Definitions may occur in a 〈body〉. Such definitions are
known as internal definitions as opposed to library body
definitions.

With lambda, let, let*, let-values, let*-values,
letrec*, and letrec, the identifier defined by an inter-
nal definition is local to the 〈body〉. That is, the identifier
is bound, and the region of the binding is the entire 〈body〉.
For example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

When base-library begin forms occur in a body prior to
the first expression, they are spliced into the body; see
section 9.5.7. Some or all of the body, including portions
wrapped in begin forms, may be specified by a syntactic
abstraction (see section 6.3.2).

An expanded 〈body〉 (see chapter 8) containing internal
definitions can always be converted into an equivalent
letrec* expression. For example, the let expression in
the above example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

9.5. Expressions

The entries in this section describe the expressions of the
base language, which may occur in the position of the
〈expression〉 syntactic variable. The expressions also in-
clude constant literals, variable references and procedure
calls as described in section 6.3.1.

9.5.1. Literal expressions

(quote 〈datum〉) syntax

Syntax: 〈Datum〉 should be a datum value.

Semantics: (quote 〈datum〉) evaluates to the datum de-
noted by 〈datum〉. (See section 3.3.). This notation is used
to include literal constants in Scheme code.

32 Revised5.92 Scheme

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

As noted in section 3.3.5, (quote 〈datum〉) may be abbre-
viated as ’〈datum〉:

’"abc" =⇒ "abc"

’145932 =⇒ 145932

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

As noted in section 4.8, the value of a literal expression
may be immutable.

9.5.2. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 must be a formal arguments list as de-
scribed below, and 〈body〉 must be according to section 9.4.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression is
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was eval-
uated is extended by binding the variables in the formal
argument list to fresh locations, and the resulting actual ar-
gument values are stored in those locations. Then, the ex-
pressions in the body of the lambda expression (which may
contain internal definitions and thus represent a letrec*

form, see section 9.4) are evaluated sequentially in the ex-
tended environment. The results of the last expression in
the body are returned as the results of the procedure call.

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

((lambda (x)

(define (p y)

(+ y 1))

(+ (p x) x))

5) =⇒ 11

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 must have one of the following forms:

• (〈variable1〉 . . .): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the ar-
guments are stored in the bindings of the correspond-
ing variables.

• 〈variable〉: The procedure takes any number of ar-
guments; when the procedure is called, the sequence
of actual arguments is converted into a newly allo-
cated list, and the list is stored in the binding of the
〈variable〉.

• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n
is the number of formal arguments before the period
(there must be at least one). The value stored in the
binding of the last variable is a newly allocated list
of the actual arguments left over after all the other
actual arguments have been matched up against the
other formal arguments.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

It is a syntax violation for a 〈variable〉 to appear more than
once in 〈formals〉.

Each procedure created as the result of evaluating a lambda
expression is (conceptually) tagged with a storage location,
in order to make eqv? and eq? work on procedures (see
section 9.6).

9.5.3. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 must be ex-
pressions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see section 4.6),
then 〈consequent〉 is evaluated and its value(s) is(are) re-
turned. Otherwise 〈alternate〉 is evaluated and its value(s)
is(are) returned. If 〈test〉 yields a false value and no
〈alternate〉 is specified, then the result of the expression
is the unspecified value.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

(if #f #f) =⇒ the unspecified value

9. Base library 33

9.5.4. Assignments

(set! 〈variable〉 〈expression〉) syntax

〈Expression〉 is evaluated, and the resulting value is stored
in the location to which 〈variable〉 is bound. 〈Variable〉
must be bound either in some region enclosing the set!

expression or at the top level of a library body. The result
of the set! expression is the unspecified value.

(let ((x 2))

(+ x 1)

(set! x 4)

(+ x 1)) =⇒ 5

It is a syntax violation if 〈variable〉 refers to an immutable
binding.

9.5.5. Derived conditionals

(cond 〈clause1〉 〈clause2〉 . . .) syntax

Syntax: Each 〈clause〉 must be of the form

(〈test〉 〈expression1〉 . . .)

where 〈test〉 is any expression. Alternatively, a 〈clause〉
may be of the form

(〈test〉 => 〈expression〉)

The last 〈clause〉 may be an “else clause”, which has the
form

(else 〈expression1〉 〈expression2〉 . . .).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈clause〉s in order un-
til one of them evaluates to a true value (see section 4.6).
When a 〈test〉 evaluates to a true value, then the remain-
ing 〈expression〉s in its 〈clause〉 are evaluated in order,
and the result(s) of the last 〈expression〉 in the 〈clause〉
is(are) returned as the result(s) of the entire cond expres-
sion. If the selected 〈clause〉 contains only the 〈test〉 and
no 〈expression〉s, then the value of the 〈test〉 is returned
as the result. If the selected 〈clause〉 uses the => alternate
form, then the 〈expression〉 is evaluated. Its value must
be a procedure that accepts one argument; this procedure
is then called on the value of the 〈test〉 and the value(s)
returned by this procedure is(are) returned by the cond

expression. If all 〈test〉s evaluate to false values, and there
is no else clause, then the result of the conditional expres-
sion is the unspecified value; if there is an else clause, then
its 〈expression〉s are evaluated, and the value(s) of the last
one is(are) returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond (’(1 2 3) => cadr)

(else #f)) =⇒ 2

A sample definition of cond in terms of simpler forms is in
appendix A.

(case 〈key〉 〈clause1〉 〈clause2〉 . . .) syntax

Syntax: 〈Key〉 must be any expression. Each 〈clause〉 has
one of the following forms:

((〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .)
(else 〈expression1〉 〈expression2〉 . . .)

The second form, which specifies an “else clause”, may only
appear as the last 〈clause〉. Each 〈datum〉 is an external
representation of some object. The datums denoted by the
〈datum〉s need not be distinct.

Semantics: A case expression is evaluated as follows.
〈Key〉 is evaluated and its result is compared against the
datums denoted by the 〈datum〉s of each 〈clause〉 in turn,
proceding in order from left to right through the set of
clauses. If the result of evaluating 〈key〉 is equivalent (in
the sense of eqv?; see section 9.6) to a datum of a 〈clause〉,
the corresponding 〈expression〉s are evaluated from left to
right and the results of the last expression in the 〈clause〉
are returned as the results of the case expression. Oth-
erwise, the comparison process continues. If the result of
evaluating 〈key〉 is different from every datum in each set,
then if there is an else clause its expressions are evaluated
and the results of the last are the results of the case ex-
pression; otherwise the result of the case expression is the
unspecified value.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ the unspecified value
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else ’consonant)) =⇒ consonant

(and 〈test1〉 . . .) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: The 〈test〉 expressions are evaluated from left
to right, and the value of the first expression that evaluates
to a false value (see section 4.6) is returned. Any remain-
ing expressions are not evaluated. If all the expressions
evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

The and keyword could be defined in terms of if using
syntax-rules (see section 9.21) as follows:

34 Revised5.92 Scheme

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

(or 〈test1〉 . . .) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: The 〈test〉 expressions are evaluated from left
to right, and the value of the first expression that evaluates
to a true value (see section 4.6) is returned. Any remaining
expressions are not evaluated. If all expressions evaluate
to false values, the value of the last expression is returned.
If there are no expressions then #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or ’(b c) (/ 3 0)) =⇒ (b c)

The or keyword could be defined in terms of if using
syntax-rules (see section 9.21) as follows:

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

9.5.6. Binding constructs

The four binding constructs let, let*, letrec*, and
letrec give Scheme a block structure, like Algol 60. The
syntax of the four constructs is identical, but they differ in
the regions they establish for their variable bindings. In a
let expression, the initial values are computed before any
of the variables become bound; in a let* expression, the
bindings and evaluations are performed sequentially. In a
letrec* or letrec expression, all the bindings are in effect
while their initial values are being computed, thus allowing
mutually recursive definitions. In a letrec expression, the
initial values are computed before being assigned to the
variables; in a letrec*, the evaluations and assignments
are performed sequentially.

In addition, the binding constructs let-values and
let*-values allow the binding of results of expression re-
turning multiple values. They are analogous to let and
let* in the way they establish regions: in a let-values

expression, the initial values are computed before any of
the variables become bound; in a let*-values expression,
the bindings are performed sequentially.

Note: These forms are compatible with SRFI 11 [24].

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 9.4. It is a syntax violation for a
〈variable〉 to appear more than once in the list of variables
being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the value(s) of
the last expression of 〈body〉 is(are) returned. Each bind-
ing of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also named let, section 9.18.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 must be a sequence of one or more expressions.

Semantics: The let* form is similar to let, but the bind-
ings are performed sequentially from left to right, and the
region of a binding indicated by (〈variable〉 〈init〉) is that
part of the let* expression to the right of the binding.
Thus the second binding is done in an environment in which
the first binding is visible, and so on.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

Note: While a let expression must not contain duplicate vari-

ables, a let* expression can.

The let* keyword could be defined in terms of let using
syntax-rules (see section 9.21) as follows:

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 expr1) (name2 expr2) ...)

body1 body2 ...)

(let ((name1 expr1))

(let* ((name2 expr2) ...)

body1 body2 ...)))))

9. Base library 35

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 must be a sequence of one or more expressions.
It is a syntax violation for a 〈variable〉 to appear more than
once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations,
the 〈init〉s are evaluated in the resulting environment (in
some unspecified order), each 〈variable〉 is assigned to the
result of the corresponding 〈init〉, the 〈body〉 is evaluated
in the resulting environment, and the value(s) of the last
expression in 〈body〉 is(are) returned. Each binding of a
〈variable〉 has the entire letrec expression as its region,
making it possible to define mutually recursive procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t

One restriction on letrec is very important: it must be
possible to evaluate each 〈init〉 without assigning or refer-
ring to the value of any 〈variable〉. If this restriction is
violated, an exception with condition type &assertion is
raised. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most com-
mon uses of letrec, all the 〈init〉s are lambda expressions
and the restriction is satisfied automatically.

A sample definition of letrec in terms of simpler forms is
in appendix A.

(letrec* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 must be a sequence of one or more expressions.
It is a syntax violation for a 〈variable〉 to appear more than
once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations
undefined, each 〈variable〉 is assigned in left-to-right or-
der to the result of evaluating the corresponding 〈init〉, the
〈body〉 is evaluated in the resulting environment, and the
value(s) of the last expression in 〈body〉 is(are) returned.
Despite the left-to-right evaluation and assignment order,
each binding of a 〈variable〉 has the entire letrec* expres-
sion as its region, making it possible to define mutually
recursive procedures.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

One restriction on letrec* is very important: it must be
possible to evaluate each 〈init〉 without assigning or re-
ferring to the value the corresponding 〈variable〉 or the
〈variable〉 of any of the bindings that follow it in 〈bindings〉.
If this restriction is violated, an exception with condition
type &assertion is raised. The restriction is necessary be-
cause Scheme passes arguments by value rather than by
name.

The letrec* keyword could be defined approximately
in terms of let and set! using syntax-rules (see sec-
tion 9.21) as follows:

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &assertion to be raised if
an attempt to read from or write to the location occurs
before the assignments generated by the letrec* trans-
formation take place. (No such expression is defined in
Scheme.)

(let-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . .),

and 〈body〉 is as described in section 9.4. It is a syntax
violation for a variable to appear more than once in the
list of variables that appear as part of the formals.

Semantics: The 〈init〉s are evaluated in the current en-
vironment (in some unspecified order), and the variables
occurring in the 〈formals〉 are bound to fresh locations
containing the values returned by the 〈init〉s, where the
〈formals〉 are matched to the return values in the same
way that the 〈formals〉 in a lambda expression are matched
to the actual arguments in a procedure call. Then, the
〈body〉 is evaluated in the extended environment, and the
value(s) of the last expression of 〈body〉 is(are) returned.

36 Revised5.92 Scheme

Each binding of a variable has 〈body〉 as its region. If the
〈formals〉 do not match, an exception with condition type
&assertion is raised.

(let-values (((a b) (values 1 2))

((c d) (values 3 4)))

(list a b c d)) =⇒ (1 2 3 4)

(let-values (((a b . c) (values 1 2 3 4)))

(list a b c)) =⇒ (1 2 (3 4))

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y a b)

A sample definition of let-values in terms of simpler
forms is in appendix A.

(let*-values 〈mv-bindings〉 〈body〉) syntax

The let*-values form is the same as with let-values,
but the bindings are processed sequentially from left
to right, and the region of the bindings indicated by
(〈formals〉 〈init〉) is that part of the let*-values expres-
sion to the right of the bindings. Thus, the second set of
bindings is evaluated in an environment in which the first
set of bindings is visible, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

The following macro defines let*-values in terms of let
and let-values:

(define-syntax let*-values

(syntax-rules ()

((let*-values () body1 body2 ...)

(let () body1 body2 ...))

((let*-values (binding1 binding2 ...)

body1 body2 ...)

(let-values (binding1)

(let*-values (binding2 ...)

body1 body2 ...)))))

9.5.7. Sequencing

(begin 〈form〉 . . .) syntax
(begin 〈expression〉 〈expression〉 . . .) syntax

The 〈begin〉 keyword has two different roles, depending on
its context:

• It may appear as a form in a 〈body〉 (see section 9.4),
〈library body〉 (see section 6.1), or 〈toplevel body〉
(see chapter 7), or directly nested in a begin form that
appears in a body. In this case, the begin form must

have the shape specified in the first header line. This
use of begin acts as a splicing form—the forms inside
the 〈body〉 are spliced into the surrounding body, as
if the begin wrapper were not actually present.

A begin form in a 〈body〉 or 〈library body〉 must be
non-empty if it appears after the first 〈expression〉
within the body.

• It may appear as an ordinary expression and must
have the shape specified in the second header line.
In this case, the 〈expression〉s are evaluated sequen-
tially from left to right, and the value(s) of the last
〈expression〉 is(are) returned. This expression type is
used to sequence side effects such as assignments or
input and output.

(define x 0)

(begin (set! x 5)

(+ x 1)) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

The following macro, which uses syntax-rules (see sec-
tion 9.21), defines begin in terms of lambda. Note that it
only covers the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. It, too, only covers
the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda ignored

(begin exp2 ...))))))

9.6. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation
(it is symmetric, reflexive, and transitive). Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, and equal? is the coarsest. The
eqv? predicate is slightly less discriminating than eq?.

9. Base library 37

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation
on objects. Briefly, it returns #t if obj1 and obj2 should
normally be regarded as the same object. This relation is
left slightly open to interpretation, but the following par-
tial specification of eqv? holds for all implementations of
Scheme.

The eqv? procedure returns #t if one of the following holds:

• Obj1 and obj2 are both #t or both #f.

• Obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

=⇒ #t

• Obj1 and obj2 are both exact numbers, and are numer-
ically equal (see =, section 9.9).

• Obj1 and obj2 are both inexact numbers, are numer-
ically equal (see =, section 9.9, and yield the same
results (in the sense of eqv?) when passed as argu-
ments to any other procedure that can be defined as
a finite composition of Scheme’s standard arithmetic
procedures.

• Obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 9.13).

• Both obj1 and obj2 are the empty list, or the unspeci-
fied value, respectively.

• Obj1 and obj2 are pairs, vectors, or strings that denote
the same locations in the store (section 4.8).

• Obj1 and obj2 are procedures whose location tags are
equal (section 9.5.2).

The eqv? procedure returns #f if one of the following holds:

• Obj1 and obj2 are of different types (section 9.1).

• One of obj1 and obj2 is #t but the other is #f.

• Obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

=⇒ #f

• One of obj1 and obj2 is an exact number but the other
is an inexact number.

• Obj1 and obj2 are rational numbers for which the =

procedure returns #f.

• Obj1 and obj2 yield different results (in the sense of
eqv?) when passed as arguments to any other proce-
dure that can be defined as a finite composition of
Scheme’s standard arithmetic procedures.

• Obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

• One of obj1 and obj2 is the empty list, or the unspeci-
fied value, but the other is not.

• Obj1 and obj2 are pairs, vectors, or strings that denote
distinct locations.

• Obj1 and obj2 are procedures that would behave dif-
ferently (return different value(s) or have different side
effects) for some arguments.

Note: The eqv? procedure returning #t when obj1 and obj2
are numbers does not imply that = would also return #t when

called with obj1 and obj2 as arguments.

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? ’() ’()) =⇒ #t

(eqv? (unspecified) (unspecified))

=⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(eqv? #f ’nil) =⇒ #f

(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ #t

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified
(eqv? +nan.0 +nan.0) =⇒ unspecified

The next set of examples shows the use of eqv? with pro-
cedures that have local state. Calls to gen-counter must
return a distinct procedure every time, since each proce-
dure has its own internal counter. The gen-loser pro-
cedure, however, returns equivalent procedures each time,
since the local state does not affect the value or side effects
of the procedures.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

38 Revised5.92 Scheme

(let ((g (gen-counter)))

(eqv? g g)) =⇒ #t

(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ #t

(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since it is the effect of trying to modify constant objects
(those returned by literal expressions) is unspecified, im-
plementations are permitted, though not required, to share
structure between constants where appropriate. Thus the
value of eqv? on constants is sometimes implementation-
dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified
(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

Rationale: The above definition of eqv? allows implementa-

tions latitude in their treatment of procedures and literals: im-

plementations are free either to detect or to fail to detect that

two procedures or two literals are equivalent to each other, and

can decide whether or not to merge representations of equivalent

objects by using the same pointer or bit pattern to represent

both.

(eq? obj1 obj2) procedure

The eq? predicate is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those
detectable by eqv?.

The eq? and eqv? predicates are guaranteed to have the
same behavior on symbols, booleans, the empty list, the
unspecified value, pairs, procedures, and non-empty strings
and vectors. The behavior of eq? on numbers and char-
acters is implementation-dependent, but it always returns
either true or false, and returns true only when eqv? would
also return true. The eq? predicate may also behave dif-
ferently from eqv? on empty vectors and empty strings.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? (unspecified) (unspecified))

=⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ #t

(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ #t

Rationale: It is usually possible to implement eq? much more

efficiently than eqv?, for example, as a simple pointer compari-

son instead of as some more complicated operation. One reason

is that it may not be possible to compute eqv? of two numbers

in constant time, whereas eq? implemented as pointer compar-

ison will always finish in constant time. The eq? predicate may

be used like eqv? in applications using procedures to implement

objects with state since it obeys the same constraints as eqv?.

(equal? obj1 obj2) procedure

The equal? predicate returns #t if and only if the (possibly
infinite) unfoldings of its arguments into regular trees are
equal as ordered trees.

The equal? predicate treats pairs and vectors as nodes
with outgoing edges, uses string=? to compare strings,
uses bytesvector=? to compare bytevectors (see library
chapter 2), and uses eqv? to compare other nodes.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? ’#vu8(1 2 3 4 5)

(u8-list->bytevector

’(1 2 3 4 5)) =⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

(let* ((x (list ’a))

(y (list ’a))

(z (list x y)))

(list (equal? z (list y x))

(equal? z (list x x))))

=⇒ (#t #t)

9. Base library 39

9.7. Procedure predicate

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

9.8. Unspecified value

(unspecified) procedure

Returns the unspecified value. (See section 9.1.)

Note: The unspecified value is not a datum value, and thus

has no external representation.

(unspecified? obj) procedure

Returns #t if obj is the unspecified value, otherwise returns
#f.

9.9. Generic arithmetic

The procedures described here implement arithmetic that
is generic over the numerical tower described in chapter 2.
The generic procedures described in this section accept
both exact and inexact numbers as arguments, perform-
ing coercions and selecting the appropriate operations as
determined by the numeric subtypes of their arguments.

Library chapter 9 describes libraries that define other nu-
merical procedures.

9.9.1. Propagation of exactness and inexactness

The procedures listed below must return the correct exact
result provided all their arguments are exact:

+ - *

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt real-part imag-part

make-rectangular

The procedures listed below must return the correct ex-
act result provided all their arguments are exact, and no
divisors are zero:

/

div mod div-and-mod

div0 mod0 div0-and-mod0

The general rule is that the generic operations return the
correct exact result when all of their arguments are exact
and the result is mathematically well-defined, but return an
inexact result when any argument is inexact. Exceptions to
this rule include sqrt, exp, log, sin, cos, tan, asin, acos,
atan, expt, make-polar, magnitude, and angle, which are
allowed (but not required) to return inexact results even
when given exact arguments, as indicated in the specifica-
tion of these procedures.

One general exception to the rule above is that an im-
plementation may return an exact result despite inexact
arguments if that exact result would be the correct result
for all possible substitutions of exact arguments for the
inexact ones.

9.9.2. Representability of infinities and NaNs

The specification of the numerical operations is written as
though infinities and NaNs are representable, and specifies
many operations with respect to these numbers in ways
that are consistent with the IEEE 754 standard for binary
floating point arithmetic. An implementation of Scheme
is not required to represent infinities and NaNs, however;
an implementation must raise a continuable exception with
condition type &no-infinities or &no-nans (respectively;
see library section 9.2) whenever it is unable to represent
an infinity or NaN as required by the specification. In this
case, the continuation of the exception handler is the con-
tinuation that otherwise would have received the infinity
or NaN value. This requirement also applies to conversions
between numbers and external representations, including
the reading of program source code.

9.9.3. Semantics of common operations

Some operations are the semantic basis for several arith-
metic procedures. The behavior of these operations is de-
scribed in this section for later reference.

Integer division

For various kinds of arithmetic (fixnum, flonum, exact, in-
exact, and generic), Scheme provides operations for per-
forming integer division. They rely on mathematical op-
erations div, mod, div0, and mod0, that are defined as
follows:

div, mod, div0, and mod0 each accept two real numbers x1

and x2 as operands, where x2 must be nonzero.

40 Revised5.92 Scheme

div returns an integer, and mod returns a real. Their re-
sults are specified by

x1 div x2 = nd

x1 mod x2 = xm

where
x1 = nd ∗ x2 + xm

0 ≤ xm < |x2|

Examples:

5 div 3 = 1

5 div − 3 = −1

5 mod 3 = 2

5 mod − 3 = 2

div0 and mod0 are like div and mod, except the result of
mod0 lies within a half-open interval centered on zero. The
results are specified by

x1 div0 x2 = nd

x1 mod0 x2 = xm

where:
x1 = nd ∗ x2 + xm

−|x2

2
| ≤ xm < |x2

2
|

Examples:

5 div0 3 = 2

5 div0 − 3 = −2

5 mod0 3 = −1

5 mod0 − 3 = −1

Rationale: The half-open symmetry about zero is convenient

for some purposes.

Transcendental functions

In general, the transcendental functions log, sin−1 (arc-
sine), cos−1 (arccosine), and tan−1 are multiply defined.
The value of log z is defined to be the one whose imagi-
nary part lies in the range from −π (inclusive if −0.0 is
distinguished, exclusive otherwise) to π (inclusive). log 0
is undefined.

The value of log z for non-real z is defined in terms of log
on real numbers as

log z = log |z| + angle z

where angle z is the angle of z = a · eib specified as:

angle z = b + 2πn

with −π ≤ angle z ≤ π and angle z = b + 2πn for some
integer n.

With the one-argument version of log defined this way, the
values of the two-argument-version of log, sin−1 z, cos−1 z,
tan−1 z, and the two-argument version of tan−1 are accord-
ing to the following formulæ:

log z b =
log z

log b

sin−1 z = −i log(iz +
√

1 − z2)

cos−1 z = π/2 − sin−1 z

tan−1 z = (log(1 + iz) − log(1 − iz))/(2i)

tan−1 x y = angle(x + yi)

The range of tan−1 x y is as in the following table. The
asterisk (*) indicates that the entry applies to implemen-
tations that distinguish minus zero.

y condition x condition range of result r
y = 0.0 x > 0.0 0.0

∗ y = +0.0 x > 0.0 +0.0
∗ y = −0.0 x > 0.0 −0.0

y > 0.0 x > 0.0 0.0 < r < π

2

y > 0.0 x = 0.0 π

2

y > 0.0 x < 0.0 π

2
< r < π

y = 0.0 x < 0 π
∗ y = +0.0 x < 0.0 π
∗ y = −0.0 x < 0.0 −π

y < 0.0 x < 0.0 −π < r < −π

2

y < 0.0 x = 0.0 −π

2

y < 0.0 x > 0.0 −π

2
< r < 0.0

y = 0.0 x = 0.0 undefined
∗ y = +0.0 x = +0.0 +0.0
∗ y = −0.0 x = +0.0 −0.0
∗ y = +0.0 x = −0.0 π
∗ y = −0.0 x = −0.0 −π
∗ y = +0.0 x = 0 π

2

∗ y = −0.0 x = 0 −π

2

The above specification follows Steele [42], which in turn
cites Penfield [34]; refer to these sources for more detailed
discussion of branch cuts, boundary conditions, and imple-
mentation of these functions.

9.9.4. Numerical operations

Numerical type predicates

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the

9. Base library 41

object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

If z is a complex number, then (real? z) is true
if and only if (zero? (imag-part z)) and (exact?

(imag-part z)) are both true.

If x is a real number, then (rational? x) is true if
and only if there exist exact integers k1 and k2 such
that (= x (/ k1 k2)) and (= (numerator x) k1) and (=

(denominator x) k2) are all true. Thus infinities and
NaNs are not rational numbers.

If q is a rational number, then (integer? q) is true if
and only if (= (denominator q) 1) is true. If q is not a
rational number, then (integer? q) is false.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? -2.5+0i) =⇒ #t

(real? -2.5) =⇒ #t

(real? #e1e10) =⇒ #t

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(rational? 2) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

(integer? 8/4) =⇒ #t

(number? +nan.0) =⇒ #t

(complex? +nan.0) =⇒ #t

(real? +nan.0) =⇒ #t

(rational? +nan.0) =⇒ #f

(complex? +inf.0) =⇒ #t

(real? -inf.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(integer? -inf.0) =⇒ #f

Note: The behavior of these type predicates on inexact num-

bers is unreliable, because any inaccuracy may affect the result.

(real-valued? obj) procedure
(rational-valued? obj) procedure
(integer-valued? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. The real-valued?

procedure They return #t if the object is a number and
is equal in the sense of = to some real number, or if the
object is a NaN, or a complex number whose real part is a
NaN and whose imaginary part zero in the sense of zero?.
The rational-valued? and integer-valued? procedures
return #t if the object is a number and is equal in the sense
of = to some object of the named type, and otherwise they
return #f.

(real-valued? +nan.0) =⇒ #t

(real-valued? +nan.0+0i) =⇒ #t

(real-valued? -inf.0) =⇒ #t

(real-valued? 3) =⇒ #t

(real-valued? -2.5+0.0i) =⇒ #t

(real-valued? -2.5+0i) =⇒ #t

(real-valued? -2.5) =⇒ #t

(real-valued? #e1e10) =⇒ #t

(rational-valued? +nan.0) =⇒ #f

(rational-valued? -inf.0) =⇒ #f

(rational-valued? 6/10) =⇒ #t

(rational-valued? 6/10+0.0i)=⇒ #t

(rational-valued? 6/10+0i) =⇒ #t

(rational-valued? 6/3) =⇒ #t

(integer-valued? 3+0i) =⇒ #t

(integer-valued? 3+0.0i) =⇒ #t

(integer-valued? 3.0) =⇒ #t

(integer-valued? 3.0+0.0i) =⇒ #t

(integer-valued? 8/4) =⇒ #t

Rationale: These procedures test whether a given number

can be coerced to the specified type without loss of numerical

accuracy. Their behavior is different from the numerical type

predicates in the previous entry, whose behavior is motivated

by closure properties designed to enable statically predictable

semantics and efficient implementation.

Note: The behavior of these type predicates on inexact num-

bers is unreliable, because any inaccuracy may affect the result.

(exact? z) procedure
(inexact? z) procedure

These numerical predicates provide tests for the exactness
of a quantity. For any Scheme number, precisely one of
these predicates is true.

(exact? 5) =⇒ #t

(inexact? +inf.0) =⇒ #t

Generic conversions

(->inexact z) procedure
(->exact z) procedure

->inexact returns an inexact representation of z . If in-
exact numbers of the appropriate type have bounded pre-
cision, then the value returned is an inexact number that
is nearest to the argument. If an exact argument has no
reasonably close inexact equivalent, an exception with con-
dition type &implementation-violation may be raised.

->exact returns an exact representation of z . The value
returned is the exact number that is numerically closest to
the argument; in most cases, the result of this procedure

42 Revised5.92 Scheme

should be numerically equal to its argument. If an inexact
argument has no reasonably close exact equivalent, an ex-
ception with condition type &implementation-violation
may be raised.

These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range.

->inexact and ->exact are idempotent.

(real->flonum x) procedure

Returns the best flonum representation of x .

The value returned is a flonum that is numerically closest
to the argument.

Rationale: Not all reals are inexact, and some inexact reals

may not be flonums.

Note: If flonums are represented in binary floating point, then

implementations are strongly encouraged to break ties by pre-

ferring the floating point representation whose least significant

bit is zero.

(real->single x) procedure
(real->double x) procedure

Given a real number x , these procedures compute the best
IEEE-754 single or double precision approximation to x
and return that approximation as an inexact real.

Note: Both of the two conversions performed by these pro-

cedures (to IEEE-754 single or double, and then to an inexact

real) may lose precision, introduce error, or may underflow or

overflow.

Rationale: The ability to round to IEEE-754 single or double

precision is occasionally needed for control of precision or for

interoperability.

Arithmetic operations

(= z1 z2 z3 . . .) procedure
(< x1 x2 x3 . . .) procedure
(> x1 x2 x3 . . .) procedure
(<= x1 x2 x3 . . .) procedure
(>= x1 x2 x3 . . .) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, and #f otherwise.

(= +inf.0 +inf.0) =⇒ #t

(= -inf.0 +inf.0) =⇒ #f

(= -inf.0 -inf.0) =⇒ #t

For any real number x that is neither infinite nor NaN:

(< -inf.0 x +inf.0)) =⇒ #t

(> +inf.0 x -inf.0)) =⇒ #t

For any number z :

(= +nan.0 z) =⇒ #f

(< +nan.0 z) =⇒ #f

These predicates are required to be transitive.

Note: The traditional implementations of these predicates in

Lisp-like languages are not transitive.

Note: While it is possible to compare inexact numbers using
these predicates, the results may be unreliable because a small
inaccuracy may affect the result; this is especially true of = and
zero?.

When in doubt, consult a numerical analyst.

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure
(finite? x) procedure
(infinite? x) procedure
(nan? x) procedure

These numerical predicates test a number for a particular
property, returning #t or #f. See note above. The zero?

procedure tests if the number is = to zero, positive? tests
whether it is greater than zero, negative? tests whether
it is less than zero, odd? tests whether it is odd, even?

tests whether it is even, finite? tests whether it is not an
infinity and not a NaN, infinite? tests whether it is an
infinity, nan? tests whether it is a NaN.

(positive? +inf.0) =⇒ #t

(negative? -inf.0) =⇒ #t

(finite? +inf.0) =⇒ #f

(finite? 5) =⇒ #t

(finite? 5.0) =⇒ #t

(infinite? 5.0) =⇒ #f

(infinite? +inf.0) =⇒ #t

(max x1 x2 . . .) procedure
(min x1 x2 . . .) procedure

These procedures return the maximum or minimum of their
arguments.

(max 3 4) =⇒ 4 ; exact

(max 3.9 4) =⇒ 4.0 ; inexact

For any real number x :

(max +inf.0 x) =⇒ +inf.0

(min -inf.0 x) =⇒ -inf.0

9. Base library 43

Note: If any argument is inexact, then the result is also inexact

(unless the procedure can prove that the inaccuracy is not large

enough to affect the result, which is possible only in unusual

implementations). If min or max is used to compare numbers of

mixed exactness, and the numerical value of the result cannot

be represented as an inexact number without loss of accuracy,

then the procedure may raise an exception with condition type

&implementation-restriction.

(+ z1 . . .) procedure
(* z1 . . .) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(+ +inf.0 +inf.0) =⇒ +inf.0

(+ +inf.0 -inf.0) =⇒ +nan.0

(* 4) =⇒ 4

(*) =⇒ 1

(* 5 +inf.0) =⇒ +inf.0

(* -5 +inf.0) =⇒ -inf.0

(* +inf.0 +inf.0) =⇒ +inf.0

(* +inf.0 -inf.0) =⇒ -inf.0

(* 0 +inf.0) =⇒ 0 or +nan.0

(* 0 +nan.0) =⇒ 0 or +nan.0

For any real number x that is neither infinite nor NaN:

(+ +inf.0 x) =⇒ +inf.0

(+ -inf.0 x) =⇒ -inf.0

(+ +nan.0 x) =⇒ +nan.0

For any real number x that is neither infinite nor NaN nor
an exact 0:

(* +nan.0 x) =⇒ +nan.0

If any of these procedures are applied to mixed
non-rational real and non-real complex arguments,
they either raise an exception with condition type
&implementation-restriction or return an unspecified
number.

(- z) procedure
(- z1 z2 . . .) procedure
(/ z) procedure
(/ z1 z2 . . .) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(- +inf.0 +inf.0) =⇒ +nan.0

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(/ 0.0) =⇒ +inf.0

(/ 1.0 0) =⇒ +inf.0

(/ -1 0.0) =⇒ -inf.0

(/ +inf.0) =⇒ 0.0

(/ 0 0)

=⇒ &assertion exception or +nan.0

(/ 0 3.5) =⇒ 0.0 ; inexact

(/ 0 0.0) =⇒ +nan.0

(/ 0.0 0) =⇒ +nan.0

(/ 0.0 0.0) =⇒ +nan.0

If any of these procedures are applied to mixed
non-rational real and non-real complex arguments,
they either raise an exception with condition type
&implementation-restriction or return an unspecified
number.

(abs x) procedure

Returns the absolute value of its argument.

(abs -7) =⇒ 7

(abs -inf.0) =⇒ +inf.0

(div-and-mod x1 x2) procedure
(div x1 x2) procedure
(mod x1 x2) procedure
(div0-and-mod0 x1 x2) procedure
(div0 x1 x2) procedure
(mod0 x1 x2) procedure

These procedures implement number-theoretic integer divi-
sion and return the results of the corresponding mathemat-
ical operations specified in section 9.9.3. In each case, x1

must be neither infinite nor a NaN, and x2 must be nonzero;
otherwise, an exception with condition type &assertion is
raised.

(div x1 x2) =⇒ x1 div x2

(mod x1 x2) =⇒ x1 mod x2

(div-and-mod x1 x2) =⇒ x1 div x2, x1 mod x2

; two return values

(div0 x1 x2) =⇒ x1 div0 x2

(mod0 x1 x2) =⇒ x1 mod0 x2

(div0-and-mod0 x1 x2)

=⇒ x1 div0 x2, x1 mod0 x2

; two return values

(gcd n1 . . .) procedure
(lcm n1 . . .) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

44 Revised5.92 Scheme

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

(lcm 32.0 -36) =⇒ 288.0 ; inexact

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(->inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return inexact integers on inexact argu-
ments that are not infinities or NaNs, and exact integers
on exact rational arguments. For such arguments, floor
returns the largest integer not larger than x . The ceiling

procedure returns the smallest integer not smaller than x .
The truncate procedure returns the integer closest to x
whose absolute value is not larger than the absolute value
of x . The round procedure returns the closest integer to x ,
rounding to even when x is halfway between two integers.

Rationale: The round procedure rounds to even for consistency

with the default rounding mode specified by the IEEE floating

point standard.

Note: If the argument to one of these procedures is inexact,

then the result is also inexact. If an exact value is needed, the

result should be passed to the ->exact procedure.

Although infinities and NaNs are not integers, these pro-
cedures return an infinity when given an infinity as an ar-
gument, and a NaN when given a NaN.

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0 ; inexact

(round 7/2) =⇒ 4 ; exact

(round 7) =⇒ 7

(floor +inf.0) =⇒ +inf.0

(ceiling -inf.0) =⇒ -inf.0

(round +nan.0) =⇒ +nan.0

(rationalize x1 x2) procedure

The rationalize procedure returns the simplest rational
number differing from x1 by no more than x2. A rational
number r1 is simpler than another rational number r2 if
r1 = p1/q1 and r2 = p2/q2 (in lowest terms) and |p1| ≤ |p2|
and |q1| ≤ |q2|. Thus 3/5 is simpler than 4/7. Although not
all rationals are comparable in this ordering (consider 2/7
and 3/5) any interval contains a rational number that is
simpler than every other rational number in that interval
(the simpler 2/5 lies between 2/7 and 3/5). Note that
0 = 0/1 is the simplest rational of all.

(rationalize

(->exact .3) 1/10) =⇒ 1/3 ; exact

(rationalize .3 1/10) =⇒ #i1/3 ; inexact

(rationalize +inf.0 3) =⇒ +inf.0

(rationalize +inf.0 +inf.0) =⇒ +nan.0

(rationalize 3 +inf.0) =⇒ 0.0

(exp z) procedure
(log z) procedure
(log z1 z2) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan x1 x2) procedure

These procedures compute the usual transcendental func-
tions. The exp procedure computes the base-e exponential
of z . The log procedure with a single argument computes
the natural logarithm of z (not the base ten logarithm);
(log z1 z2) computes the base-z2 logarithm of z1. The
asin, acos, and atan procedures compute arcsine, arc-
cosine, and arctangent, respectively. The two-argument
variant of atan computes (angle (make-rectangular x2

x1)).

See section 9.9.3 for the underlying mathematical opera-
tions. These procedures may return inexact results even
when given exact arguments.

(exp +inf.0) =⇒ +inf.0

(exp -inf.0) =⇒ 0.0

(log +inf.0) =⇒ +inf.0

(log 0.0) =⇒ -inf.0

(log 0)

=⇒ &assertion exception
(log -inf.0) =⇒ +inf.0+πi
(atan -inf.0)

9. Base library 45

=⇒ -1.5707963267948965 ; approximately

(atan +inf.0)

=⇒ 1.5707963267948965 ; approximately

(log -1.0+0.0i) =⇒ 0.0+πi
(log -1.0-0.0i) =⇒ 0.0-πi

; if -0.0 is distinguished

(sqrt z) procedure

Returns the principal square root of z . For rational z ,
the result has either positive real part, or zero real part
and non-negative imaginary part. With log defined as in
section 9.9.3, the value of (sqrt z) could be expressed as

e
log z

2 .

The sqrt procedure may return an inexact result even
when given an exact argument.

(sqrt -5)

=⇒ 0.0+2.23606797749979i ; approximately

(sqrt +inf.0) =⇒ +inf.0

(sqrt -inf.0) =⇒ +inf.0i

(exact-integer-sqrt k) procedure

The exact-integer-sqrt procedure returns two non-
negative exact integers s and r where ei = s2 + r and
ei < (s + 1)2.

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1,

z1
z2 = ez2 log z1

0.0z is 1.0 if z = 0.0, and 0.0 if (real-part z)
is positive. For other cases in which the first argu-
ment is zero, an exception is raised with condition type
&implementation-restriction or an unspecified number
is returned.

For an exact real z1 and an exact integer z2, (expt z1 z2)
must return an exact result. For all other values of z1 and
z2, (expt z1 z2) may return an inexact result, even when
both z1 and z2 are exact.

(expt 5 3) =⇒ 125

(expt 5 -3) =⇒ 1/125

(expt 5 0) =⇒ 1

(expt 0 5) =⇒ 0

(expt 0 5+.0000312i) =⇒ 0

(expt 0 -5) =⇒ unspecified
(expt 0 -5+.0000312i) =⇒ unspecified
(expt 0 0) =⇒ 1

(expt 0.0 0.0) =⇒ 1.0

(make-rectangular x1 x2) procedure
(make-polar x3 x4) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle z) procedure

Suppose x1, x2, x3, and x4 are real numbers and z is a
complex number such that

z = x1 + x2i = x3e
ix4 .

Then:

(make-rectangular x1 x2) =⇒ z
(make-polar x3 x4) =⇒ z
(real-part z) =⇒ x1

(imag-part z) =⇒ x2

(magnitude z) =⇒ |x3|

(angle z) =⇒ xangle

where −π ≤ x angle ≤ π with x angle = x4 + 2πn for some
integer n.

(angle -1.0) =⇒ π
(angle -1.0+0.0) =⇒ π
(angle -1.0-0.0) =⇒ -π

; if -0.0 is distinguished

Moreover, suppose x1, x2 are such that either x1 or x2 is an
infinity, then

(make-rectangular x1 x2) =⇒ z
(magnitude z) =⇒ +inf.0

The make-polar, magnitude, and angle procedures may
return inexact results even when given exact arguments.

(angle -1) =⇒ π
(angle +inf.0) =⇒ 0.0

(angle -inf.0) =⇒ π
(angle -1.0+0.0) =⇒ π
(angle -1.0-0.0) =⇒ −π

; if -0.0 is distinguished

Numerical Input and Output

(number->string z) procedure
(number->string z radix) procedure
(number->string z radix precision) procedure

Radix must be an exact integer, either 2, 8, 10, or 16.
If omitted, radix defaults to 10. If a precision is specified,
then z must be an inexact complex number, precision must
be an exact positive integer, and radix must be 10. The
number->string procedure takes a number and a radix
and returns as a string an external representation of the
given number in the given radix such that

46 Revised5.92 Scheme

(let ((number number)
(radix radix))

(eqv? number

(string->number (number->string number

radix)

radix)))

is true. If no possible result makes this ex-
pression true, an exception with condition type
&implementation-restriction is raised.

If a precision is specified, then the representations of the
inexact real components of the result, unless they are infi-
nite or NaN, specify an explicit 〈mantissa width〉 p, and p
is the least p ≥ precision for which the above expression is
true.

If z is inexact, the radix is 10, and the above expression
and condition can be satisfied by a result that contains a
decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive
of exponent, trailing zeroes, and mantissa width) needed
to make the above expression and condition true [5, 12];
otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

Note: The error case can occur only when z is not a complex

number or is a complex number with a non-rational real or

imaginary part.

Rationale: If z is an inexact number represented using binary

floating point, and the radix is 10, then the above expression is

normally satisfied by a result containing a decimal point. The

unspecified case allows for infinities, NaNs, and representations

other than binary floating point.

(string->number string) procedure
(string->number string radix) procedure

Returns a number of the maximally precise representation
expressed by the given string . Radix must be an exact
integer, either 2, 8, 10, or 16. If supplied, radix is a default
radix that may be overridden by an explicit radix prefix
in string (e.g. "#o177"). If radix is not supplied, then
the default radix is 10. If string is not a syntactically
valid notation for a number, then string->number returns
#f.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

(string->number "15##") =⇒ 1500.0

(string->number "+inf.0") =⇒ +inf.0

(string->number "-inf.0") =⇒ -inf.0

(string->number "+nan.0") =⇒ +nan.0

9.10. Booleans

The standard boolean objects for true and false are writ-
ten as #t and #f. However, of all the standard Scheme
values, only #f counts as false in conditional expressions.
See section 4.6.

Note: Programmers accustomed to other dialects of Lisp

should be aware that Scheme distinguishes both #f and the

empty list from the symbol nil.

(not obj) procedure

Returns #t if obj is false, and returns #f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

Returns #t if obj is either #t or #f and returns #f other-
wise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f

9.11. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

9. Base library 47

The empty list is a special object of its own type. It is not
a pair. It has no elements and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field.

(pair? obj) procedure

Returns #t if obj is a pair, and otherwise returns #f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair .

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ &assertion exception

(cdr pair) procedure

Returns the contents of the cdr field of pair .

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ &assertion exception

(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure

These procedures are compositions of car and cdr, where
for example caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list. Otherwise, returns #f.

(list? obj) procedure

Returns #t if obj is a list. Otherwise, returns #f. By
definition, all lists are chains of pairs that have finite length
and are terminated by the empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(list obj . . .) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()

(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . . obj) procedure

Returns a possibly improper list consisting of the elements
of the first list followed by the elements of the other lists,
with obj as the cdr of the final pair. An improper list
results if obj is not a proper list.

(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

48 Revised5.92 Scheme

The resulting chain of pairs is always newly allocated, ex-
cept that it shares structure with the obj argument.

(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure

List must be a list of size at least k .

The list-tail procedure returns the subchain of pairs of
list obtained by omitting the first k elements.

(list-tail ’(a b c d) 2) =⇒ (c d)

Implementation responsibilities: The implementation must
check that list is a chain of pairs of size at least k . It should
not check that it is a chain of pairs beyond this size.

List-tail could be defined by

(define (list-tail l k)

(if (and (not (null? l))

(not (pair? l)))

(assertion-violation

’list-tail

"not a list"

l))

(if (or (not (exact? k))

(not (integer? k))

(negative? k))

(assertion-violation

’list-tail

"not an exact non-negative integer"

l))

(let loop ((l l) (k k))

(if (zero? k)

l

(loop (cdr l) (- k 1)))))

(list-ref list k) procedure

List must be a list of size at least k + 1.

Returns the kth element of list .

(list-ref ’(a b c d) 2) =⇒ c

Implementation responsibilities: The implementation must
check that list is a chain of pairs of size at least k + 1. It
should not check that it is a list of pairs beyond this size.

(map proc list1 list2 . . .) procedure

The lists must all have the same length. Proc must be a
procedure that takes as many arguments as there are lists

and returns a single value. Proc must not mutate any of
the lists.

The map procedure applies proc element-wise to the ele-
ments of the lists and returns a list of the results, in order.
Proc is always called in same dynamic environment as map
itself. The dynamic order in which proc is applied to the
elements of the lists is unspecified.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on proc to the
extent performed by applying it as described.

(for-each proc list1 list2 . . .) procedure

The lists must all have the same length. Proc must be a
procedure that takes as many arguments as there are lists.
Proc must not mutate any of the lists.

The for-each procedure applies proc element-wise to the
elements of the lists for its side effects, in order from the
first element(s) to the last. Proc is always called in same
dynamic environment as for-each itself. The return val-
ues of for-each are unspecified.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(for-each (lambda (x) x) ’(1 2 3 4))

=⇒ 4

(for-each even? ’()) =⇒ the unspecified value

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on proc to the
extent performed by applying it as described.

Rationale: The return values are unspecified to allow imple-

mentations of for-each to tail-call proc on the last element(s).

9. Base library 49

9.12. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eq?, eqv? and
equal?) if and only if their names are spelled the same way.
This is exactly the property needed to represent identifiers
in programs, and so most implementations of Scheme use
them internally for that purpose. Symbols are useful for
many other applications; for instance, they may be used
the way enumerated values are used in C and Pascal.

A symbol literal is formed using quote.

Hello =⇒ Hello

’H\x65;llo =⇒ Hello

’λ =⇒ λ
’\x3BB; =⇒ λ
(string->symbol "a b") =⇒ a\x20;b

(string->symbol "a\\b") =⇒ a\x5C;b

’a\x20;b =⇒ a\x20;b

’|a b| ; syntax violation
; (illegal character
; vertical bar)

’a\nb ; syntax violation
; (illegal use of backslash)

’a\x20 ; syntax violation
; (missing semi-colon to
; terminate \x escape)

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol->string symbol) procedure

Returns the name of symbol as a string. The returned
string may be immutable.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(string->symbol string) procedure

Returns the symbol whose name is string .

(eq? ’mISSISSIppi ’mississippi)

=⇒ #f

(string->symbol "mISSISSIppi")

=⇒ the symbol with name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

9.13. Characters

Characters are objects that represent Unicode scalar val-
ues [46].

Note: Unicode defines a standard mapping between sequences
of code points (integers in the range 0 to #x10FFFF in the lat-
est version of the standard) and human-readable “characters”.
More precisely, Unicode distinguishes between glyphs, which are
printed for humans to read, and characters, which are abstract
entities that map to glyphs (sometimes in a way that’s sensitive
to surrounding characters). Furthermore, different sequences
of code points sometimes correspond to the same character.
The relationships among code points, characters, and glyphs
are subtle and complex.

Despite this complexity, most things that a literate human

would call a “character” can be represented by a single code

point in Unicode (though there may exist code-point sequences

that represent that same character). For example, Roman let-

ters, Cyrillic letters, Hebrew consonants, and most Chinese

characters fall into this category. Thus, the “code point” ap-

proximation of “character” works well for many purposes. More

specifically, Scheme characters correspond to Unicode scalar

values, which includes all code points except those designated

as surrogates. A surrogate is a code point in the range #xD800

to #xDFFF that is used in pairs in the UTF-16 encoding to

encode a supplementary character (whose code is in the range

#x10000 to #x10FFFF).

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char->integer char) procedure
(integer->char sv) procedure

Sv must be a Unicode scalar value, i.e. a non-negative exact
integer in [0, #xD7FF] ∪ [#xE000, #x10FFFF].

Given a character, char->integer returns its Unicode
scalar value as an exact integer. For a Unicode scalar value
sv , integer->char returns its associated character.

(integer->char 32) =⇒ #\space

(char->integer (integer->char 5000))

=⇒ 5000

(integer->char #xD800) =⇒ &assertion exception

50 Revised5.92 Scheme

(char=? char1 char2 char3 . . .) procedure
(char<? char1 char2 char3 . . .) procedure
(char>? char1 char2 char3 . . .) procedure
(char<=? char1 char2 char3 . . .) procedure
(char>=? char1 char2 char3 . . .) procedure

These procedures impose a total ordering on the set of
characters according to their Unicode scalar values.

(char<? #\z #\ß) =⇒ #t

(char<? #\z #\Z) =⇒ #f

9.14. Strings

Strings are sequences of characters.

The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
that is fixed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

In phrases such as “the characters of string beginning with
index start and ending with index end”, it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string , then the entire string is referred to.

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure

Returns a newly allocated string of length k . If char is
given, then all elements of the string are initialized to char ,
otherwise the contents of the string are unspecified.

(string char . . .) procedure

Returns a newly allocated string composed of the argu-
ments.

(string-length string) procedure

Returns the number of characters in the given string .

(string-ref string k) procedure

K must be a valid index of string . The string-ref proce-
dure returns character k of string using zero-origin index-
ing.

(string-set! string k char) procedure

k must be a valid index of string . The string-set! pro-
cedure stores char in element k of string and returns the
unspecified value.

Passing an immutable string to string-set! should cause
an exception with condition type &assertion to be
raised.

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ the unspecified value
(string-set! (g) 0 #\?) =⇒ unspecified

; should raise &assertion exception
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ unspecified
; should raise &assertion exception

(string=? string1 string2 string3 . . .) procedure

Returns #t if the strings are the same length and contain
the same characters in the same positions. Otherwise, re-
turns #f.

(string=? "Straße" "Strasse")=⇒ #f

(string<? string1 string2 string3 . . .) procedure
(string>? string1 string2 string3 . . .) procedure
(string<=? string1 string2 string3 . . .) procedure
(string>=? string1 string2 string3 . . .) procedure

These procedures are the lexicographic extensions to
strings of the corresponding orderings on characters. For
example, string<? is the lexicographic ordering on strings
induced by the ordering char<? on characters. If two
strings differ in length but are the same up to the length
of the shorter string, the shorter string is considered to be
lexicographically less than the longer string.

(string<? "z" "ß") =⇒ #t

(string<? "z" "zz") =⇒ #t

(string<? "z" "Z") =⇒ #f

(substring string start end) procedure

String must be a string, and start and end must be exact
integers satisfying

0 ≤ start ≤ end ≤ (string-length string).

The substring procedure returns a newly allocated string
formed from the characters of string beginning with index
start (inclusive) and ending with index end (exclusive).

(string-append string . . .) procedure

Returns a newly allocated string whose characters form the
concatenation of the given strings.

9. Base library 51

(string->list string) procedure
(list->string list) procedure

List must be a list of characters. The string->list pro-
cedure returns a newly allocated list of the characters that
make up the given string. The list->string procedure re-
turns a newly allocated string formed from the characters
in list . The string->list and list->string procedures
are inverses so far as equal? is concerned.

(string-copy string) procedure

Returns a newly allocated copy of the given string .

(string-fill! string char) procedure

Stores char in every element of the given string and returns
the unspecified value.

9.15. Vectors

Vectors are heterogeneous structures whose elements are
indexed by integers. A vector typically occupies less space
than a list of the same length, and the average time re-
quired to access a randomly chosen element is typically
less for the vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created. The valid indexes of a
vector are the exact non-negative integers less than the
length of the vector. The first element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.

Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna")

=⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector. Otherwise, returns #f.

(make-vector k) procedure
(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj . . .) procedure

Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact in-
teger.

(vector-ref vector k) procedure

K must be a valid index of vector . The vector-ref pro-
cedure returns the contents of element k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(->exact (round (* 2 (acos -1)))))

=⇒ 13

(vector-set! vector k obj) procedure

K must be a valid index of vector . The vector-set! pro-
cedure stores obj in element k of vector . The value re-
turned by vector-set! is the unspecified value.

Passing an immutable vector to vector-set! should cause
an exception with condition type &assertion to be raised.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ unspecified
; constant vector

; may raise &assertion exception

(vector->list vector) procedure
(list->vector list) procedure

The vector->list procedure returns a newly allocated list
of the objects contained in the elements of vector . The
list->vector procedure returns a newly created vector
initialized to the elements of the list list .

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector-fill! vector fill) procedure

Stores fill in every element of vector and returns the un-
specified value.

(vector-map proc vector1 vector2 . . .) procedure

The vectors must all have the same length. Proc must be
a procedure. If the vectors are non-empty, proc must take
as many arguments as there are vectors and must return a
single value.

52 Revised5.92 Scheme

The vector-map procedure applies proc element-wise to
the elements of the vectors and returns a vector of the
results, in order. Proc is always called in same dynamic
environment as vector-map itself. The dynamic order in
which proc is applied to the elements of the vectors is un-
specified.

Analogous to map.

(vector-for-each proc vector1 vector2 . . .) procedure

The vectors must all have the same length. Proc must
be a procedure. If the vectors are non-empty, proc
must take as many arguments as there are vectors. The
vector-for-each procedure applies proc element-wise to
the elements of the vectors for its side effects, in order
from the first element(s) to the last. Proc is always called
in same dynamic environment as vector-for-each itself.
The return values of vector-for-each are unspecified.

Analogous to for-each.

9.16. Errors and violations

(error who message irritant1 . . .) procedure
(assertion-violation who message irritant1 . . .)

procedure

Who must be a string or a symbol or #f. message must be
a string. The irritants are arbitrary objects.

These procedures raise an exception. Calling the error

procedure means that an error has occurred, typically
caused by something that has gone wrong in the inter-
action of the program with the external world or the user.
Calling the assertion-violation procedure means that
an invalid call to a procedure was made, either passing an
invalid number of arguments, or passing an argument that
it is not specified to handle.

The who argument should describe the procedure or oper-
ation that detected the exception. The message argument
should describe the exceptional situation. The irritants
should be the arguments to the operation that detected
the operation.

The condition object provided with the exception (see li-
brary chapter 6) has the following condition types:

• If who is not #f, the condition has condition type &who,
with who as the value of the who field. In that case,
who should identify the procedure or entity that de-
tected the exception. If it is #f, the condition does
not have condition type &who.

• The condition has condition type &message, with
message as the value of the message field.

• The condition has condition type &irritants, and the
irritants field has as its value a list of the irritants.

Moreover, the condition created by error has con-
dition type &error, and the condition created by
assertion-violation has condition type &assertion.

(define (fac n)

(if (not (integer-valued? n))

(assertion-violation

’fac "non-integral argument" n))

(if (negative? n)

(assertion-violation

’fac "negative argument" n))

(letrec

((loop (lambda (n r)

(if (zero? n)

r

(loop (- n 1) (* r n))))))

(loop n 1)))

(fac 5) =⇒ 120

(fac 4.5) =⇒ &assertion exception
(fac -3) =⇒ &assertion exception

Rationale: The procedures encode a common pattern of raising

exceptions.

9.17. Control features

This chapter describes various primitive procedures which
control the flow of program execution in special ways.

(apply proc arg1 . . . args) procedure

Proc must be a procedure and args must be a list. Calls
proc with the elements of the list (append (list arg1

. . .) args) as the actual arguments.

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

Proc must be a procedure of one argument. The procedure
call-with-current-continuation (which is the same as
the procedure call/cc) packages the current continuation
(see the rationale below) as an “escape procedure” and
passes it as an argument to proc. The escape procedure is
a Scheme procedure that, if it is later called, will abandon
whatever continuation is in effect at that later time and

9. Base library 53

will instead use the continuation that was in effect when
the escape procedure was created. Calling the escape pro-
cedure may cause the invocation of before and after thunks
installed using dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation of the original call to
call-with-current-continuation.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It may be
stored in variables or data structures and may be called as
many times as desired.

The following examples show only the most common ways
in which call-with-current-continuation is used. If
all real uses were as simple as these examples, there
would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t

Rationale:

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is useful for imple-
menting a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation. Most
of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply
it by the value stored in a local variable, add seven, and store
the result in some other variable. Normally these ubiquitous
continuations are hidden behind the scenes and programmers
do not think much about them. On rare occasions, however,

a programmer may need to deal with continuations explic-
itly. The call-with-current-continuation procedure allows
Scheme programmers to do that by creating a procedure that
acts just like the current continuation.

Most programming languages incorporate one or more special-

purpose escape constructs with names like exit, return, or

even goto. In 1965, however, Peter Landin [29] invented a

general purpose escape operator called the J-operator. John

Reynolds [38] described a simpler but equally powerful con-

struct in 1972. The catch special form described by Sussman

and Steele in the 1975 report on Scheme is exactly the same as

Reynolds’s construct, though its name came from a less general

construct in MacLisp. Several Scheme implementors noticed

that the full power of the catch construct could be provided by

a procedure instead of by a special syntactic construct, and the

name call-with-current-continuation was coined in 1982.

This name is descriptive, but opinions differ on the merits of

such a long name, and some people use the name call/cc in-

stead.

(values obj . . .) procedure

Delivers all of its arguments to its continuation. The
values procedure might be defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

The continuations of all non-final expressions within a se-
quence of expressions in lambda, begin, let, let*, letrec,
letrec*, let-values, let*-values, case, cond, and do

forms as well as the continuations of the before and after
arguments to dynamic-wind take an arbitrary number of
values.

Except for these and the continuations created by
call-with-values, let-values, and let*-values, all
other continuations take exactly one value. The effect of
passing an inappropriate number of values to a continu-
ation not created by call-with-values, let-values, or
let*-valuesis undefined.

(call-with-values producer consumer) procedure

Calls its producer argument with no values and a contin-
uation that, when passed some values, calls the consumer
procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call
to call-with-values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

54 Revised5.92 Scheme

If an inappropriate number of values is passed to a contin-
uation created by call-with-values, an exception with
condition type &assertion is raised.

(dynamic-wind before thunk after) procedure

Before, thunk , and after must be procedures accepting zero
arguments and returning any number of values.

In the absence of any calls to escape procedures (see
call-with-current-continuation), dynamic-wind be-
haves as if defined as follows.

(define dynamic-wind

(lambda (before thunk after)

(before)

(call-with-values

(lambda () (thunk))

(lambda vals

(after)

(apply values vals)))))

That is, before is called without arguments. If before re-
turns, thunk is called without arguments. If thunk returns,
after is called without arguments. Finally, if after returns,
the values resulting from the call to thunk are returned.

Invoking an escape procedure to transfer control into or out
of the dynamic extent of the call to thunk can cause addi-
tional calls to before and after . When an escape procedure
created outside the dynamic extent of the call to thunk is
invoked from within the dynamic extent, after is called just
after control leaves the dynamic extent. Similarly, when an
escape procedure created within the dynamic extent of the
call to thunk is invoked from outside the dynamic extent,
before is called just before control reenters the dynamic
extent. In the latter case, if thunk returns, after is called
even if thunk has returned previously. While the calls to
before and after are not considered to be within the dy-
namic extent of the call to thunk , calls to the before and
after thunks of any other calls to dynamic-wind that occur
within the dynamic extent of the call to thunk are consid-
ered to be within the dynamic extent of the call to thunk .

More precisely, an escape procedure used to transfer con-
trol out of the dynamic extent of a set of zero or more
active dynamic-wind thunk calls x . . . and transfer con-
trol into the dynamic extent of a set of zero or more active
dynamic-wind thunk calls y . . . proceeds as follows. It
leaves the dynamic extent of the most recent x and calls
without arguments the corresponding after thunk. If the
after thunk returns, the escape procedure proceeds to the
next most recent x, and so on. Once each x has been han-
dled in this manner, the escape procedure calls without
arguments the before thunk corresponding to the least re-
cent y. If the before thunk returns, the escape procedure
reenters the dynamic extent of the least recent y and pro-
ceeds with the next least recent y, and so on. Once each y
has been handled in this manner, control is transfered to
the continuation packaged in the escape procedure.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2)))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 1

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

values

(lambda ()

(dynamic-wind

values

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2))

(k))))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 7

9.18. Iteration

(let 〈variable〉 〈bindings〉 〈body〉) syntax

“Named let” is a variant on the syntax of let which pro-
vides a more general looping construct than do and may
also be used to express recursions. It has the same syn-
tax and semantics as ordinary let except that 〈variable〉

9. Base library 55

is bound within 〈body〉 to a procedure whose formal argu-
ments are the bound variables and whose body is 〈body〉.
Thus the execution of 〈body〉 may be repeated by invoking
the procedure named by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

The let keyword could be defined in terms of lambda and
letrec using syntax-rules (see section 9.21) as follows:

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

body1 body2 ...)))

tag)

val ...))))

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . .)
(〈test〉 〈expression〉 . . .)

〈expressionx〉 . . .)

Syntax: The 〈init〉s, 〈step〉s, and 〈test〉s must be expres-
sions. The 〈variable〉s must be pairwise distinct variables.

Semantics: The do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on
each iteration. When a termination condition is met, the
loop exits after evaluating the 〈expression〉s.

A do expression are evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is
false (see section 4.6), then the 〈expression〉s are evaluated
in order for effect, the 〈step〉 expressions are evaluated in
some unspecified order, the 〈variable〉s are bound to fresh
locations, the results of the 〈step〉s are stored in the bind-
ings of the 〈variable〉s, and the next iteration begins.

If 〈test〉 evaluates to a true value, then the 〈expression〉s
are evaluated from left to right and the value(s) of the

last 〈expression〉 is(are) returned. If no 〈expression〉s are
present, then the value of the do expression is the unspec-
ified value.

The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s. It is a syntax
violation for a 〈variable〉 to appear more than once in the
list of do variables.

A 〈step〉 may be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

The following definition of do uses a trick to expand the
variable clauses.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

(unspecified)

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

9.19. Quasiquotation

(quasiquote 〈qq template〉) syntax

“Backquote” or “quasiquote” expressions are useful for
constructing a list or vector structure when some but
not all of the desired structure is known in advance. If
no unquote or unquote-splicing forms appear within
the 〈qq template〉, the result of evaluating (quasiquote

〈qq template〉) is equivalent to the result of evaluating
(quote 〈qq template〉).

56 Revised5.92 Scheme

If an (unquote 〈expression〉 . . .) form appears inside a
〈qq template〉, however, the 〈expression〉s are evaluated
(“unquoted”) and their results are inserted into the struc-
ture instead of the unquote form.

If an (unquote-splicing 〈expression〉 . . .) form appears
inside a 〈qq template〉, then the 〈expression〉s must evalu-
ate to lists; the opening and closing parentheses of the lists
are then “stripped away” and the elements of the lists are
inserted in place of the unquote-splicing form.

unquote-splicing and multi-operand unquote forms
must appear only within a list or vector 〈qq template〉.

As noted in section 3.3.5, (quasiquote 〈qq template〉)
may be abbreviated `〈qq template〉, (unquote

〈expression〉) may be abbreviated ,〈expression〉, and
(unquote-splicing 〈expression〉) may be abbreviated
,@〈expression〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

`((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

(let ((name ’foo))

`((unquote name name name)))

=⇒ (foo foo foo)

(let ((name ’(foo)))

`((unquote-splicing name name name)))

=⇒ (foo foo foo)

(let ((q ’((append x y) (sqrt 9))))

``(foo ,,@q))

=⇒ `(foo (unquote (append x y) (sqrt 9)))

(let ((x ’(2 3))

(y ’(4 5)))

`(foo (unquote (append x y) (sqrt 9))))

=⇒ (foo (2 3 4 5) 3)

Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same nest-
ing level as the outermost quasiquote. The nesting level
increases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)

It is a syntax violation if any of the identifiers quasiquote,
unquote, or unquote-splicing appear in positions within
a 〈qq template〉 otherwise than as described above.

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an

infinite number of production rules. Imagine a copy of the
following rules for D = 1, 2, 3, D keeps track of the
nesting depth.

〈quasiquotation〉 −→ 〈quasiquotation 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈simple datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→

(unquote-splicing 〈qq template D − 1〉*)
| (unquote 〈qq template D − 1〉*)

In 〈quasiquotation〉s, a 〈list qq template D〉 can some-
times be confused with either an 〈unquotation D〉 or
a 〈splicing unquotation D〉. The interpretation as an
〈unquotation〉 or 〈splicing unquotation D〉 takes prece-
dence.

9.20. Binding constructs for syntactic key-
words

The let-syntax and letrec-syntax forms are analogous
to let and letrec but bind keywords rather than vari-
ables. Like a begin form, a let-syntax or letrec-syntax
form may appear in a definition context, in which case
it is treated as a definition, and the forms in the body
of the form must also be definitions. A let-syntax or
letrec-syntax form may also appear in an expression con-
text, in which case the forms within their bodies must be
expressions.

(let-syntax 〈bindings〉 〈form〉 . . .) syntax

Syntax: 〈Bindings〉 must have the form

((〈keyword〉 〈expression〉) . . .)

Each 〈keyword〉 is an identifier, each 〈expression〉 is an
expression that evaluates, at macro-expansion time, to a
transformer (see library chapter 10). It is a syntax viola-
tion for 〈keyword〉 to appear more than once in the list of
keywords being bound. The 〈form〉s are arbitrary forms.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax form with macros whose keywords are

9. Base library 57

the 〈keyword〉s, bound to the specified transformers. Each
binding of a 〈keyword〉 has the 〈form〉s as its region.

The 〈form〉s of a let-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin. See section 9.5.7. Thus, internal definitions
in the result of expanding the 〈form〉s have the same region
as any definition appearing in place of the let-syntax form
would have.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(let ()

(let-syntax

((def (syntax-rules ()

((def stuff ...) (define stuff ...)))))

(def foo 42))

foo) =⇒ 42

(let ()

(let-syntax ())

5) =⇒ 5

(letrec-syntax 〈bindings〉 〈form〉 . . .) syntax

Syntax: Same as for let-syntax.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the letrec-syntax form with macros whose keywords
are the 〈keyword〉s, bound to the specified transformers.
Each binding of a 〈keyword〉 has the 〈bindings〉 as well
as the 〈form〉s within its region, so the transformers can
transcribe forms into uses of the macros introduced by the
letrec-syntax form.

The 〈form〉s of a letrec-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin, see section 9.5.7. Thus, internal definitions
in the result of expanding the 〈form〉s have the same region
as any definition appearing in place of the letrec-syntax

form would have.

(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

The following example highlights how let-syntax and
letrec-syntax differ.

(let ((f (lambda (x) (+ x 1))))

(let-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 2)

(let ((f (lambda (x) (+ x 1))))

(letrec-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 1)

The two expressions are identical except that
the let-syntax form in the first expression is a
letrec-syntax form in the second. In the first ex-
pression, the f occurring in g refers to the let-bound
variable f, whereas in the second it refers to the keyword f

whose binding is established by the letrec-syntax form.

9.21. Macro transformers

(syntax-rules (〈literal〉 ...) 〈syntax rule〉 ...)

syntax

Syntax: Each 〈literal〉 must be an identifier. Each
〈syntax rule〉 must have the following form:

(〈srpattern〉 〈template〉)

An 〈srpattern〉 is a restricted form of 〈pattern〉, namely,
a nonempty 〈pattern〉 in one of four parenthesized forms
below whose first subform is an identifier or an underscore
. A 〈pattern〉 is an identifier, constant, or one of the fol-
lowing.

58 Revised5.92 Scheme

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

Semantics: An instance of syntax-rules evaluates, at
macro-expansion time, to a new macro transformer by
specifying a sequence of hygienic rewrite rules. A use of
a macro whose keyword is associated with a transformer
specified by syntax-rules is matched against the patterns
contained in the 〈syntax rule〉s, beginning with the left-
most 〈syntax rule〉. When a match is found, the macro use
is transcribed hygienically according to the template. It is
a syntax violation when no match is found.

An identifier appearing within a 〈pattern〉 may be an un-
derscore (), a literal identifier listed in the list of literals
(〈literal〉 ...), or an ellipsis (...). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 ...).

While the first subform of 〈srpattern〉 may be an identifier,
the identifier is not involved in the matching and is not
considered a pattern variable or literal identifier.

Rationale: The identifier is most often the keyword used to

identify the macro. The scope of the keyword is determined

by the binding form or syntax definition that binds it to the

associated macro transformer. If the keyword were a pattern

variable or literal identifier, then the template that follows

the pattern would be within its scope regardless of whether

the keyword were bound by let-syntax, letrec-syntax, or

define-syntax.

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax viola-
tion if the same pattern variable appears more than once
in a 〈pattern〉.

Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.

A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two

identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ().

• P is a pattern variable.

• P is a literal identifier and F is an identifier such that
both P and F would refer to the same binding if both
were to appear in the output of the macro outside of
any bindings inserted into the output of the macro.
(If neither of two like-named identifiers refers to any
binding, i.e., both are undefined, they are considered
to refer to the same binding.)

• P is of the form (P1 ... Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 ... Pn . Px) and F is a list
or improper list of n or more elements whose first n
elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...

Pn), where 〈ellipsis〉 is the identifier ... and F is a
proper list of n elements whose first k elements match
P1 through Pk, whose next m−k elements each match
Pe, and whose remaining n−m elements match Pm+1

through Pn.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...

Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n − m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 ... Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 ... Pk Pe 〈ellipsis〉 Pm+1

... Pn), where 〈ellipsis〉 is the identifier ... and F is
a vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

9. Base library 59

When a macro use is transcribed according to the template
of the matching 〈syntax rule〉, pattern variables that occur
in the template are replaced by the subforms they match
in the input.

Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur
in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a syn-
tax violation if the constraints of this paragraph are not
met.

A template of the form (〈ellipsis〉 〈template〉) is identi-
cal to 〈template〉, except that ellipses within the template
have no special meaning. That is, any ellipses contained
within 〈template〉 are treated as ordinary identifiers. In
particular, the template (... ...) produces a single el-
lipsis, This allows syntactic abstractions to expand
into forms containing ellipses.

As an example, if let and cond are defined as in sec-
tion 9.5.6 and appendix A then they are hygienic (as re-
quired) and the following is not an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the top-level
identifier =>, which the macro transformer treats as a syn-
tactic keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))

instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in an assertion violation.

(identifier-syntax 〈template〉) syntax
(identifier-syntax (〈id1〉 〈template1〉) syntax

((set! 〈id2〉 〈pattern〉)
〈template2〉))

Syntax: The 〈id〉s must be identifiers.

Semantics: When a keyword is bound to a transformer
produced by the first form of identifier-syntax, refer-
ences to the keyword within the scope of the binding are
replaced by 〈template〉.

(define p (cons 4 5))

(define-syntax p.car (identifier-syntax (car p)))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

The second, more general, form of identifier-syntax

permits the transformer to determine what happens when
set! is used. In this case, uses of the identifier by itself are
replaced by 〈template1〉, and uses of set! with the identi-
fier are replaced by 〈template2〉.

(define p (cons 4 5))

(define-syntax p.car

(identifier-syntax

((car p))

((set! e) (set-car! p e))))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 5)

9.22. Tail calls and tail contexts

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in a
tail context.

(lambda 〈formals〉
〈definition〉*
〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from rules
for the syntax of the forms described in this chap-
ter by replacing some occurrences of 〈expression〉 with
〈tail expression〉. Only those rules that contain tail
contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

60 Revised5.92 Scheme

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)
(let* (〈binding spec〉*) 〈tail body〉)
(letrec* (〈binding spec〉*) 〈tail body〉)
(letrec (〈binding spec〉*) 〈tail body〉)
(let-values (〈mv binding spec〉*) 〈tail body〉)
(let*-values (〈mv binding spec〉*) 〈tail body〉)

(let-syntax (〈syntax spec〉*) 〈tail body〉)
(letrec-syntax (〈syntax spec〉*) 〈tail body〉)

(begin 〈tail sequence〉)

(do (〈iteration spec〉*)
(〈test〉 〈tail sequence〉)

〈expression〉*)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

〈tail body〉 −→ 〈definition〉*
〈tail sequence〉

〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond expression is in a tail context, and has a
clause of the form (〈expression1〉 => 〈expression2〉)
then the (implied) call to the procedure that results
from the evaluation of 〈expression2〉 is in a tail context.
〈expression2〉 itself is not in a tail context.

Certain built-in procedures are also required to perform
tail calls. The first argument passed to apply and to
call-with-current-continuation, and the second argu-
ment passed to call-with-values, must be called via a
tail call.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recog-

nize that some non-tail calls, such as the call to h above, can be

evaluated as though they were tail calls. In the example above,

the let expression could be compiled as a tail call to h. (The

possibility of h returning an unexpected number of values can

be ignored, because in that case the effect of the let is explicitly

unspecified and implementation-dependent.)

10. Formal semantics 61

FORMAL SEMANTICS

10. Formal semantics

We assume the reader has a basic familiarity with c ontext-
sensitive reduction semantics. Readers unfamiliar with this
system may wish to consult Felleisen and Flatt’s mono-
graph [18] or Wright and Felleisen [48] for a thorough in-
troduction, including the relevant technical background, or
an introduction to PLT Redex [32] for a somewhat lighter
one.

As a rough guide, we define the operational semantics of
a language via a relation on program terms, where the
relation corresponds to a single step of an abstract ma-
chine. The relation is defined using evaluation contexts,
namely terms with a distinguished place in them, called
holes , where the next step of evaluation occurs. We say
that a term e decomposes into an evaluation context E
and another term e′ if e is the same as E but with the
hole replaced by e′. We write E[ep] to indicate the term
obtained by replacing the hole in E with e′.

For example, assuming that we have defined a grammar
containing non-terminals for evaluation contexts (E), ex-
pressions (e), variables (x), and values (v), we would write:

E1[((lambda (x1 · · ·) e1) v1 · · ·)] →
E1[x1 · · · 7→ v1 · · ·e1] (#x1 = #v1)

to define the βv rewriting rule (as a part of the → sin-
gle step relation). We use the names of the non-terminals
(possibly with subscripts) in a rewriting rule to restrict the
application of the rule, so it applies only when some term
produced by that grammar appears in the corresponding
position in the term. If the same non-terminal with an
identical subscript appears multiple times, the rule only ap-
plies when the corresponding terms are structurally identi-
cal (nonterminals without subscripts are not constrained to
match each other). Thus, the occurrence of E1 on both the
left-hand and right-hand side of the rule above means that
the context of the application expression does not change
when using this rule. The ellipses are a form of Kleene star,
meaning that zero or more occurrences of terms matching
the pattern proceeding the ellipsis may appear in place of
the the ellipsis and the pattern preceding it. We use the
notation {x1 · · · 7→ v1 · · ·}e1 for capture-avoiding substitu-
tion; in this case it means that each x1 is replaced with the
corresponding v1 in e1. Finally, we write side-conditions in
parenthesis beside a rule; the side-condition in the above
rule indicates that the number of x1s must be the same
as the number of v1s. Sometimes we use equality in the
side-conditions; when we do it merely means simple term
equality, i.e. the two terms must have the same syntactic
shape.

Making the evaluation context E explicit in the rule allows
us to define relations that manipulate their context. As a
simple example, we can add another rule that signals an

error when a procedure is applied to the wrong number
of arguments by discarding the evaluation context on the
right-hand side of a rule:

E[((lambda (x1 · · ·) e) v1 · · ·)] →
error: wrong argument count (#x1 6= #v1)

Later we take advantage of the explicit evaluation context
in more sophisticated ways.

To help understand the semantics and how it behaves, we
have implemented it in PLT Redex. The implementation is
available at the report’s website: http://www.r6rs.org/.
All of the reduction rules and the metafunctions shown in
the figures in this semantics were generated automatically
from the source code.

10.1. Grammar

Figure 10.1 shows the grammar for the subset of the Report
this semantics models. Non-terminals are written in italics
or in a calligraphic font (P) and A), syntactic keywords
are written in boldface and other primitives are written
in a sans-serif font.

The P non-terminal represents possible program states.
The first alternative is a program with a store and a se-
ries of definitions. The second alternative is an error, and
the final one is used to indicate a place where the model
does not completely specify the behavior of the primitives
it models. The A non-terminal represents a final result of
a program. It is just like P except that all of the defini-
tions have been evaluated and the value(s) of the last one
is retained.

The sf non-terminal generates individual elements of the
store. The store holds all of the mutable state of a program.
It is explained in more detail along with the rules that
manipulate it.

The ds non-terminal generates definitions. Each definition
either binds variables with define, is a sequence of defi-
nitions wrapped in beginF, or is an expression. Rather
than synthesize the distinction between Scheme’s two be-

gin forms from the context, the F superscript on the be-

gin indicates that this is the begin whose arguments are
expected to be forms, not expressions.

Expressions include quoted data, begin expressions, be-

gin0 expressions1, application expressions, if expressions,
set! expressions, handlers expressions (used to model ex-
ceptions), variables, non-procedure values (nonproc), prim-
itive procedures (proc), dw expressions (used to model

1begin0 is not part of the standard, but we include it to make the
rules for dynamic-wind easier to read. Although we model it directly,
it can be defined in terms of other forms we model here that do come

62 Revised5.92 Scheme

P ::= (store (sf · · ·) (ds · · ·)) | uncaught exception: v | unknown: description
A ::= (store (sf · · ·) ((values v · · ·))) | uncaught exception: v | unknown: description
sf ::= (x v) | (pp (cons v v))

ds ::= (define x es) | (beginF ds · · ·) | es
es ::= ′snv | (begin es es · · ·) | (begin0 es es · · ·) | (es es · · ·)

| (if es es es) | (if es es) | (set! x es) | x | nonproc | pproc | (dw x es es es)
| (throw x (d d · · ·)) | (handlers es · · · es) | (lambda (x · · ·) es es · · ·)
| (lambda (x · · · dot x) es es · · ·)

s ::= snv | sym
snv ::= (s · · ·) | (s · · · dot sqv) | (s · · · dot sym) | sqv

p ::= (store (sf · · ·) (d · · ·))

d ::= (define x e) | (beginF d · · ·) | e
e ::= (begin e e · · ·) | (begin0 e e · · ·) | (e e · · ·) | (if e e e) | (if e e)

| (set! x e) | (handlers e · · · e) | x | nonproc | proc | (dw x e e e)

v ::= (unspecified) | nonproc | proc
nonproc ::= pp | null | ′sym | sqv | (condition string)
sqv ::= n | #t | #f
proc ::= uproc | pproc | (throw x (d d · · ·))
uproc ::= (lambda (x · · ·) e e · · ·) | (lambda (x · · · dot x) e e · · ·)
pproc ::= aproc | proc1 | proc2 | list | dynamic-wind | apply | values | unspecified
proc1 ::= null? | pair? | car | cdr | call/cc | procedure? | condition? | unspecified? | raise*
proc2 ::= cons | set-car! | set-cdr! | eqv? | call-with-values | with-exception-handler
aproc ::= + | - | / | *
raise* ::= raise-continuable | raise

sym ::= [variables except dot]
x ::= [variables except dot and keywords]
pp ::= [pair pointers]
n ::= [numbers]

Figure 10.1: Program Grammar

dynamic-wind), continuations (written with throw), and
lambda expressions. The dot is used instead of a period for
procedures that accept an arbitrary number of arguments,
in order to avoid meta-circular confusion in our PLT Redex
model. Quoted expressions are either sequences, symbols,
or self-quoting values (numbers and the booleans #t and
#f).

The p non-terminal represents program that have no
quoted data. Most of the reduction rules rewrite p to p,
rather than P to P, since quoted data is first rewritten
into calls to the list construction functions before ordinary
evaluation proceeds. Much like ds , d represents definitions
and like es , e represents expressions.

from the standard:

(begin0 e1 e2 · · ·) =

(call-with-values

(lambda () e1)
(lambda (dot x)
e2 · · ·

(apply values x)))

The values (v) are divided into five categories:

• the unspecified value, written (unspecified),

• Non-procedures (nonproc) include pair pointers (pp),
null, symbols, self-quoting values (sqv), and condi-
tions. The self-quoting values are numbers, and the
booleans #t and #f. Conditions represent the report’s
condition values, but here just contain a message and
are otherwise inert.

• User procedure (uproc) include multi-arity lambda

expressions and lambda expressions with dotted argu-
ment lists,

• Primitive procedures (pproc) include arithmetic pro-
cedures (aproc): +, -, /, and *, procedures of one
argument (proc1): null?, pair?, car, cdr, call/cc, pro-
cedure?, and condition?, procedures of two arguments:
cons, set-car!, set-cdr!, eqv?, and call-with-values, as

10. Formal semantics 63

P ::= (store (sf · · ·) W)
W ::= (D d · · ·)
D ::= (define x E◦) | E⋆

E ::= F [(handlers v · · · E⋆)] | F [(dw x e E⋆ e)] | F
E⋆ ::= []⋆ | E
E◦ ::= []◦ | E

F ::= [] | (v · · · F ◦ v · · ·) | (if F ◦ e e) | (if F ◦ e) | (set! x F ◦) | (begin F ⋆ e e · · ·)
| (begin0 F ⋆ e e · · ·) | (begin0 (values v · · ·) F ⋆ e · · ·)
| (call-with-values (lambda () F ⋆ e · · ·) v)

F ⋆ ::= []⋆ | F
F ◦ ::= []◦ | F

PG ::= (store (sf · · ·) ((define x G) d · · ·)) | (store (sf · · ·) (G d · · ·))
G ::= F [(dw x e G e)] | F

H ::= F [(handlers v · · · H)] | F

SD ::= S | (define x S) | (beginF d · · · SD ds · · ·)
S ::= [] | (begin e e · · · S es · · ·) | (begin S es · · ·) | (begin0 e e · · · S es · · ·)

| (begin0 S es · · ·) | (e · · · S es · · ·) | (if e e S) | (if e S es) | (if S es es)
| (if e S) | (if S es) | (set! x S) | (handlers s · · · S es · · · es)
| (handlers s · · · S) | (throw x (e e · · ·)) | (lambda (x · · ·) S es · · ·)
| (lambda (x · · ·) e e · · · S es · · ·) | (lambda (x · · · dot x) S es · · ·)
| (lambda (x · · · dot x) e e · · · S es · · ·)

Figure 10.2: Evaluation Context Grammar

(store (sf 1 · · ·) (d1 · · · SD1[
′snv1] ds1 · · ·))→ [6qcons]

(store (sf 1 · · ·) ((define qp QJsnv1K) d1 · · · SD1[qp] ds1 · · ·)) (qp fresh)

QJ()K = null
QJ(s1 s2 · · ·)K = (cons QJs1K QJ(s2 · · ·)K)
QJ(s1 dot sqv1)K = (cons QJs1K sqv1)
QJ(s1 s2 · · · dot sqv1)K = (cons QJs1K QJ(s2 · · · dot sqv1)K)
QJ(s1 dot sym1)K = (cons QJs1K

′sym1)
QJ(s1 s2 · · · dot sym1)K = (cons QJs1K QJ(s2 · · · dot sym1)K)
QJsym1K = ′sym1

QJsqv1K = sqv1

Figure 10.3: Quote

well as list, dynamic-wind, apply, values, and unspec-
ified, the zero-arity procedure that produces the un-
specified value.

• Finally, continuations are represented as throw ex-
pressions whose body consists of the context where
the continuation was grabbed.

The final set of non-terminals in figure 10.1, sym, x, pp,

and n represent symbols, variables, pair pointers, and num-
bers respectively. They are assumed to all be disjoint. Ad-
ditionally, the variables x are assumed not to include any
keywords, so any program variables whose names coincide
with keywords must be renamed before the semantics can
give the meaning of a program.

The set of non-terminals for evaluation contexts are shown
in figure 10.2. The P non-terminal controls where eval-

64 Revised5.92 Scheme

uation happens in a program that does not contain any
quoted data. In particular, it allows evaluation in the first
definition or expression in the sequence of expressions past
the store. The E and F evaluation contexts are for ex-
pressions. They are factored in that manner so that the
PG, G, and H evaluation contexts can re-use F and have
fine-grained control over the context to support exceptions
and dynamic-wind. The starred and circled variants, E⋆,
E◦, F ⋆, and F ◦ dictate where a single value is promoted
to multiple values and where multiple values are demoted
to a single value. Finally, SD and S are the contexts where
quoted expressions can be simplified. The precise use of the
evaluation contexts are explained along with the relevant
rules.

10.2. Quote

The first reduction rule that applies to any program is the
[6qcons] that replaces a quoted expression with a refer-
ence to a defined variable, and introduces a new definition.
This rule applies before any other because of the contexts
in which it, and all of the other rules, apply. In particular,
this rule applies in an SD context. Figure 10.2 shows that
the SD and S contexts allow this reduction to apply in
any subexpression of a d or e, as long as all of the subex-
pressions to the left have no quoted expressions in them,
although expressions to the right may have quoted expres-
sions. Accordingly, this rule applies once for each quoted
expression in the program, moving them to definitions at
the beginning of the program. The rest of the rules apply
in contexts that do not contain any quoted expressions,
ensuring that [6qcons] converts all quoted data into lists
before those rules apply.

10.3. Multiple Values

The basic strategy for multiple values is to add a rule that
demotes (values v) to v and another rule that promotes
v to (values v). If we allowed these rules to apply in an
arbitrary evaluation context, however, we would get in-
finite reduction sequences of endless alternation between
promotion and demotion. So, the semantics allows demo-
tion only in a context expecting a single value and allows
promotion only in a context expecting multiple values. We
obtain this behavior with a small extension to the Felleisen-
Hieb framework (also present in the operational model for
R5RS [30] and work on interoperability [31]). We extend
the notation so that holes have names (written with a sub-
script), and the context-matching syntax may also demand
a hole of a particular name (also written with a subscript,
for instance E[e]⋆). The extension allows us to give dif-
ferent names to the holes in which multiple values are ex-
pected and those in which single values are expected, and
structure the grammar of contexts accordingly.

To exploit this extension, we use three kinds of holes in the
evaluation context grammar in figure 10.2. The ordinary
hole [] appears where the usual kinds of evaluation can oc-
cur. The hole []⋆ appears in contexts that allows multiple
values and the hole []◦ appears in contexts that expect a
single value. Accordingly, the rules [6promote] only applies
in []⋆ contexts, and the rule [6demote] only applies in []◦
contexts.

To see how the evaluation contexts are organized to ensure
that promotion and demotion occur in the right places,
consider the F , F ⋆ and F ◦ evaluation contexts. The F ⋆

and F ◦ evaluation contexts are just the same as F , except
that they allow promotion to multiple values and demotion
to a single value, respectively. So, the F evaluation context,
rather than being defined in terms of itself, exploits F ⋆ and
F ◦ to dictate where promotion and demotion can occur.
For example, F can be (if F ◦ e e) meaning that demotion
from (values v) to v can occur in the first argument to
an if expression. Similarly, F can be (begin F ⋆ e e · · ·)
meaning that v can be promoted to (values v) in the first
argument to a begin.

In general, the promotion and demotion rules simplify the
definitions of the other rules. For instance, the rule for if

does not need to consider multiple values in its first subex-
pression. Similarly, the rule for begin does not need to
consider the case of a single value as its first subexpres-
sion.

The other three rules in figure 10.4 handle call-with-values.
The evaluation contexts for call-with-values (in the F non-
terminal) allow evaluation in the body of a thunk that has
been passed as the first argument to call-with-values, as
long as the second argument has been reduced to a value.
Once evaluation inside that thunk completes, it will pro-
duce multiple values (since it is an F ⋆ position), and the
entire call-with-values expression reduces to an application
of its second argument to those values, via the rule [6cwvd].
If the thunk passed to call-with-values has multiple body
expressions, the rule [6cwvc] drops the first one, allowing
evaluation to continue with the second. Finally, in the case
that the first argument to call-with-values is a value, but is
not of the form (lambda () e), the rule [6cwvw] wraps it
in a thunk to trigger evaluation.

10.4. Exceptions

The workhorse for the exception system are
(handlers v · · · e) expressions and the G and PG
evaluation contexts (shown in figure 10.2). The handlers

expression records the active exception handlers (v · · ·) in
some expression (e). The intention is that only the nearest
enclosing handlers expressions is relevant to raised
exceptions, and the G and PG evaluation contexts help
achieve that goal. They are just like their counterparts P

10. Formal semantics 65

P1[v1]⋆→ [6promote]
P1[(values v1)]

P1[(values v1)]◦→ [6demote]
P1[v1]

P1[(call-with-values (lambda () (values v2 · · ·)) v1)]→ [6cwvd]
P1[(v1 v2 · · ·)]

P1[(call-with-values (lambda () (values v1 · · ·) e1 e2 · · ·) v2)]→ [6cwvc]
P1[(call-with-values (lambda () e1 e2 · · ·) v2)]

P1[(call-with-values v1 v2)]→ [6cwvw]
P1[(call-with-values (lambda () (v1)) v2)] (v1 6= (lambda () e))

Figure 10.4: Multiple Values and Call-with-values

PG [(raise* v1)]→ [6xunee]
uncaught exception: v1

P [(handlers G[(raise* v1)])]→ [6xuneh]
uncaught exception: v1

PG1[(with-exception-handler v1 v2)]→ [6xweh1]
PG1[(handlers v1 (v2))] (A1Jv1K, A0Jv2K)

P1[(handlers v1 · · · G1[(with-exception-handler v2 v3)])]→ [6xwehn]
P1[(handlers v1 · · · G1[(handlers v1 · · · v2 (v3))])] (A1Jv2K, A0Jv3K)

P1[(handlers v1 · · · v2 G1[(raise-continuable v3)])]→ [6xraisec]
P1[(handlers v1 · · · v2 G1[(handlers v1 · · · (v2 v3))])]

P1[(handlers v1 · · · v2 G1[(raise v3)])]→ [6xraise]
P1[(handlers v1 · · · v2 G1[(begin (handlers v1 · · · (v2 v3)) (raise (condition “handler returned”)))])]

P1[(condition? (condition string))]→ [6ct]
P1[#t]

P1[(condition? v1)]→ [6cf]
P1[#f] (v1 6= (condition string))

P1[(handlers v1 · · · (values v3 · · ·))]→ [6xdone]
P1[(values v3 · · ·)]

P1[(with-exception-handler v1 v2)]→ [6weherr]
P1[(raise (condition “with-exception-handler bad argument”))] (x fresh, !A1Jv1K or !A0Jv2K)

Figure 10.5: Exceptions

and E, except that handlers expressions cannot occur on
the path to the hole, and the exception system rules take
advantage of that context to find the closest enclosing
handler.

To see how the contexts work together with handler

expressions, consider the left-hand side of the [6xuhee]
rule. It matches expressions that have a call to raise or
raise-continuable (the non-terminal raise* matches both
exception-raising procedures) expression in a PG evalua-

tion context. Since the PG context does not contain any
handlers expressions, this exception cannot be caught, so
this expression reduces to a final state indicating the un-
caught exception. The rule [6xuneh] also signals an un-
caught exception, but it covers the case where a handlers

expression has exhausted all of the handlers available to it.
The rule applies to expressions that have a handlers ex-
pression (with no exception handlers) in an arbitrary eval-
uation context where a call to one of the exception-raising

66 Revised5.92 Scheme

A0JnonprocK = #f
A0J(unspecified)K = #f
A0J(lambda () e e · · ·)K = #t
A0J(lambda (x x · · ·) e e · · ·)K = #f
A0J(lambda (dot x) e e · · ·)K = #t
A0J(lambda (x x · · · dot x) e e · · ·)K = #f
A0J+K = #t
A0J* K = #t
A0J/ K = #f
A0J-K = #f
A0Jproc1 K = #f
A0Jproc2 K = #f
A0JlistK = #t
A0Jdynamic-windK = #f
A0JapplyK = #f
A0JvaluesK = #t
A0J(throw x (d d · · ·))K = #t

A1JnonprocK = #f
A1J(unspecified)K = #f
A1J(lambda () e e · · ·)K = #f
A1J(lambda (x) e e · · ·)K = #t
A1J(lambda (x y z · · ·) e e · · ·)K = #f
A1J(lambda (dot x) e e · · ·)K = #t
A1J(lambda (x dot x) e e · · ·)K = #t
A1J(lambda (x x x · · · dot x) e e · · ·)K = #f
A1J+K = #t
A1J* K = #t
A1J/ K = #t
A1J-K = #t
A1Jproc1 K = #t
A1Jproc2 K = #f
A1JlistK = #t
A1Jdynamic-windK = #f
A1JapplyK = #f
A1JvaluesK = #t
A1J(throw x (d d · · ·))K = #t

Figure 10.6: Arity Testing Functions

functions is nested in the handlers expression. The use of
the G evaluation context ensures that there are no other
handler expressions between this one and the raise.

The next two rules handle calls to with-exception-handler.
The [6xweh1] rule applies when there are no handler ex-
pressions. It constructs a new one and applies v2 as a thunk
in the handler body. If there already is a handler expres-
sion, the [6xwehn] applies. It collects the current handlers
and adds the new one into a new handlers expression and,
as with the previous rule, invokes the second argument to
with-exception-handlers.

The next two rules cover exceptions that are raised in the
context of a handlers expression. If a continuable excep-
tion is raised, [6xraisec] applies. It takes the most recently
installer handler from the nearest enclosing handlers ex-
pression and applies it to the argument to raise-continuable,
but in a context where the exception handlers do not in-
clude that latest handler. The [6xraise] rule behaves simi-
larly, except it raises a new exception if the handler returns.
The new exception is created with the condition special
form.

The condition special form is a stand-in for the Report’s
conditions. It does not evaluate its argument (note its ab-
sence from the E grammar in figure 10.2). That argument
is just a literal string describing the context in which the
exception was raised. The only operation on conditions is
condition?, whose semantics are given by the two rules [6ct]
and [6cf].

Finally, the rule [6xdone] drops a handlers expression
when its body is fully evaluated, and the rule [6weherr]
raises an exception when with-exception-handler is supplied

with incorrect arguments. The metafunctions in the side-
condition guarantee that this rule only applies when the
arguments are not suitable functions. Their definitions are
given in figure 10.6.

10.5. Arithmetic & Basic Forms

This model does not include the Report’s arithmetic, but
does include an idealized form in order to make experimen-
tation with other features simpler. Figure 10.7 shows the
reduction rules for the primitive procedures that implement
addition, subtraction, multiplication, and division. They
defer to their mathematical analogues. In addition, when
the subtraction or divison operator are applied to no argu-
ments, or when division receives a zero as a divisor, or when
any of the arithmetic operations receive a non-number, an
exception is raised.

Figure 10.8 shows the rules for if , begin, and begin0.
The relevant evaluation contexts are given by the F non-
terminal.

The evaluation contexts for if only allow evaluation in its
first argument. Once that is a value, the rules for if reduce
an if expression to its first argument if the test is not #f,
and to its third subexpression (or to the value unspecified
if there are only two subexpressions).

The begin evaluation contexts allow evaluation in the first
subexpression of a begin, but only if there are two or more
subexpressions. In that case, once the first expression has
been fully simplified, the reduction rules drop its value.
If there is only a single subexpression, the begin itself is
dropped.

10. Formal semantics 67

P [(+)] → P [0] [6+0]

P [(+ n1 n2 · · ·)] → P [⌈Σ{n1,n2 · · ·}
⌉] [6+]

P [(- n1)] → P [⌈− n1
⌉] [6u-]

P [(- n1 n2 n3 · · ·)] → P [⌈n1 − Σ{n2,n3 · · ·}
⌉] [6-]

P [(-)] → P [(raise (condition “arity mismatch”))] [6-arity]

P [(*)] → P [1] [6*1]

P [(* n1 n2 · · ·)] → P [⌈Π{n1,n2 · · ·}
⌉] [6*]

P [(/ n1)] → P [(/ 1 n1)] [6u/]

P [(/ n1 n2 n3 · · ·)] → P [⌈n1/Π{n2, n3 · · ·}
⌉] [6/]

(0 6∈ {n2, n3, . . .})

P [(/ n n · · · 0 n · · ·)] → P [(raise (condition “divison by zero”))] [6/0]

P [(/)] → P [(raise (condition “arity mismatch”))] [6/arity]

P [(aproc v1 · · ·)] → P [(raise (condition “arith-op applied to non-number”))] [6ae]
(∃v ∈ v1 · · · s.t. v is not a number)

Figure 10.7: Arithmetic

P [(if v1 e1 e2)] → P [e1] [6if3t]
(v1 6= #f)

P [(if #f e1 e2)] → P [e2] [6if3f]

P [(if v1 e1)] → P [e1] [6if2t]
(v1 6= #f)

P [(if #f e1)] → P [(unspecified)] [6if2f]

P [(begin (values v · · ·) e1 e2 · · ·)] → P [(begin e1 e2 · · ·)] [6beginc]

P [(begin e1)] → P [e1] [6begind]

P [(begin0 (values v1 · · ·) (values v2 · · ·) e2 · · ·)] → P [(begin0 (values v1 · · ·) e2 · · ·)] [6begin0n]

P [(begin0 e1)] → P [e1] [6begin01]

Figure 10.8: Basic Syntactic Forms

Like the begin evaluation contexts, the begin0 evaluation
contexts allow evaluation of the first argument of a begin0

expression when there are two or more subexpressions. The
begin0 evaluation contexts also allow evaluation in the
second argument of a begin0 expression, as long as the first
argument has been fully simplified. The [6begin0n] rule
for begin0 then drops a fully simplified second argument.
Eventually, there is only a single expression in the begin0,
at which point the [begin01] rule fires, and removes the
begin0 expression.

10.6. Pairs & Eqv

The rules in figure 10.9 handle the pure subset of lists (al-
though they do use the store, to pave the way for muta-
tion). The first two rules handle list by reducing it to a
succession of calls to cons, followed by null.

The next rule, [6cons], allocates a new cons cell. It moves
(cons v1 v2) into the store, bound to a fresh identifier pp,
for pair pointer. The rules [6car] and [6cdr] extract the
components of a pair from the store when presented with
a pair pointer.

The next four rules handle the null? predicate and the pair?

68 Revised5.92 Scheme

(store (sf 1 · · ·) W 1[(cons v1 v2)])→ [6cons]
(store (sf 1 · · · (pp (cons v1 v2))) W 1[pp]) (pp fresh)

P [(list v1 v2 · · ·)]→ [6listc]
P [(cons v1 (list v2 · · ·))]

P [(list)]→ [6listn]
P [null]

(store (sf 1 · · · (pp
i

(cons v1 v2)) sf 2 · · ·) W 1[(car pp
i
)])→ [6car]

(store (sf 1 · · · (pp
i

(cons v1 v2)) sf 2 · · ·) W 1[v1])

(store (sf 1 · · · (pp
i

(cons v1 v2)) sf 2 · · ·) W 1[(cdr pp
i
)])→ [6cdr]

(store (sf 1 · · · (pp
i

(cons v1 v2)) sf 2 · · ·) W 1[v2])

P [(null? null)]→ [6null?t]
P [#t]

P [(null? v1)]→ [6null?f]
P [#f] (v1 6= null)

P [(pair? pp)]→ [6pair?t]
P [#t]

P [(pair? v1)]→ [6pair?f]
P [#f] (v1 6∈ pp)

P [(car v i)]→ [6care]
P [(raise (condition “can’t take car of non-pair”))] (v i 6∈ pp)

P [(cdr v i)]→ [6cdre]
P [(raise (condition “can’t take cdr of non-pair”))] (v i 6∈ pp)

Figure 10.9: Lists

(store (sf 1 · · · (pp1 (cons v1 v2)) sf 2 · · ·) W 1[(set-car! pp1 v3)])→ [6setcar]
(store (sf 1 · · · (pp1 (cons v3 v2)) sf 2 · · ·) W 1[(unspecified)])

(store (sf 1 · · · (pp1 (cons v1 v2)) sf 2 · · ·) W 1[(set-cdr! pp1 v3)])→ [6setcdr]
(store (sf 1 · · · (pp1 (cons v1 v3)) sf 2 · · ·) W 1[(unspecified)])

P [(set-car! v1 v2)]→ [6scare]
P [(raise (condition “can’t set-car! on a non-pair”))] (v1 6∈ pp)

P [(set-cdr! v1 v2)]→ [6scdre]
P [(raise (condition “can’t set-cdr! on a non-pair”))] (v1 6∈ pp)

P [(eqv? v1 v1)]→ [6eqt]
P [#t] (v1 6∈ uproc, v1 6= (condition string))

P [(eqv? v1 v2)]→ [6eqf]
P [#f] (v1 6∈ uproc, v2 6∈ uproc, v1 6= (condition string), v2 6= (condition string), v1 6= v2)

Figure 10.10: Cons Cell Mutation

predicate, and the final two rules raise exceptions when car
or cdr receive non pairs.

10.7. Procedures & Application

In evaluating a procedure call, the report deliberately
leaves unspecified the order in which arguments are eval-

10. Formal semantics 69

P1[(e1 · · · ei ei+1 · · ·)]→ [6mark]
P1[((lambda (x) (e1 · · · x ei+1 · · ·)) ei)] (x fresh, ei 6∈ v ,∃e ∈ e1 · · · ei+1 · · · s.t. e 6∈ v)

(store (sf 1 · · ·) W 1[((lambda (x1 x2 · · ·) e1 e2 · · ·) v1 v2 · · ·)])→ [6appN!]
(store (sf 1 · · · (bp v1)) W 1[({x1 7→ bp}(lambda (x2 · · ·) e1 e2 · · ·) v2 · · ·)])

(bp fresh, #x2 = #v2, V J(x1 (lambda (x2 · · ·) e1 e2 · · ·))K)

P1[((lambda (x1 x2 · · ·) e1 e2 · · ·) v1 v2 · · ·)]→ [6appN]
P1[({x1 7→ v1}(lambda (x2 · · ·) e1 e2 · · ·) v2 · · ·)] (#x2 = #v2, !V J(x1 (lambda (x2 · · ·) e1 e2 · · ·))K)

P1[((lambda () e1 e2 · · ·))]→ [6app0]
P1[(begin e1 e2 · · ·)]

P [((lambda (x1 · · ·) e e · · ·) v1 · · ·)]→ [6arity]
P [(raise (condition “arity mismatch”))] (#x1 6= #v1)

P1[((lambda (x1 · · · dot x r) e1 e2 · · ·) v1 · · · v2 · · ·)]→ [6app]
P1[((lambda (x1 · · · x r) e1 e2 · · ·) v1 · · · (list v2 · · ·))] (#v1 = #x1)

P [((lambda (x1 · · · dot x) e e · · ·) v1 · · ·)]→ [6arity]
P [(raise (condition “arity mismatch”))] (#v1 < #x1)

P [(procedure? proc)]→ [6proct]
P [#t]

P [(procedure? nonproc)]→ [6procf]
P [#f]

P [(procedure? (unspecified))]→ [6procu]
P [#f]

P [(nonproc v · · ·)]→ [6appe]
P [(raise (condition “can’t call non-procedure”))]

P [((unspecified) v · · ·)]→ [6appun]
P [(raise (condition “can’t call non-procedure”))]

P [(proc1 v1 · · ·)]→ [61arity]
P [(raise (condition “arity mismatch”))] (#v1 6= 1)

P [(proc2 v1 · · ·)]→ [62arity]
P [(raise (condition “arity mismatch”))] (#v1 6= 2)

P [(unspecified v1 v2 · · ·)]→ [6unarity]
P [(raise (condition “arity mismatch”))]

Figure 10.11: Procedures & Application

uated. To model that, we use a reduction system with
non-unique decomposition to model the choice of which
argument to evaluate. The intention is that a single term
decomposes into multiple different combinations of an eval-
uation context and a reducible expression and that each
choice corresponds to a different order of evaluation.

To capture unspecified evaluation order but allow only
evaluation that is consistent with some sequential order-
ing of the evaluation of an application’s subexpressions,
we use non-deterministic choice to pick a subexpression to
reduce only when we have not already committed to re-
ducing some other subexpression. To achieve that effect,
we limit the evaluation of application expressions to only

those that have a single expression that isn’t fully reduced,
as shown in the non-terminal F , in figure 10.2. To evaluate
application expressions that have more than two arguments
to evaluate, the rule [6mark] picks on of the subexpressions
of an application that is not fully simplified and lifts it out
in its own application, allowing it to be evaluated. Once
one of the lifted expressions is evaluated, the [6appN] sub-
stitutes its value back into the original application.

The [6appN] rule also handles other applications whose ar-
guments are finished by substituting the first actual pa-
rameter for the first formal parameter in the expression.
Its side-condition uses the function in figure 10.13 to en-
sure that there are no set! expressions with the parameter

70 Revised5.92 Scheme

P [(apply proc1 v1 · · · null)]→ [6applyf]
P [(proc1 v1 · · ·)]

(store (sf 1 · · · (pp
i

(cons v2 v3)) sf 2 · · ·) W 1[(apply proc1 v1 · · · pp
i
)])→ [6applyc]

(store (sf 1 · · · (pp
i

(cons v2 v3)) sf 2 · · ·) W 1[(apply proc1 v1 · · · v2 v3)])

P [(apply nonproc v · · ·)]→ [6applynf]
P [(raise (condition “can’t apply non-procedure”))]

P [(apply (unspecified) v · · ·)]→ [6applyun]
P [(raise (condition “can’t apply non-procedure”))]

P [(apply proc v1 · · · v2)]→ [6applye]
P [(raise (condition “apply’s last argument non-list”))] (v2 6∈ pp, v2 6= null)

P [(apply)]→ [6apparity0]
P [(raise (condition “arity mismatch”))]

P [(apply v)]→ [6apparity1]
P [(raise (condition “arity mismatch”))]

Figure 10.12: Apply

V J(x1 (e1 e2 e3 · · ·))K = V J(x1 e1)K or V J(x1 (e2 e3 · · ·))K
V J(x1 (e1))K = V J(x1 e1)K
V J(x1 (if e1 e2 e3))K = V J(x1 e1)K or V J(x1 e2)K or V J(x1 e3)K
V J(x1 (if e1 e2))K = V J(x1 e1)K or V J(x1 e2)K
V J(x1 (set! x1 e))K = #t
V J(x1 (set! x2 e1))K = V J(x1 e1)K

(x1 6= x2)
V J(x1 (begin e1 e2 e3 · · ·))K = V J(x1 e1)K or V J(x1 (begin e2 e3 · · ·))K
V J(x1 (begin e1))K = V J(x1 e1)K
V J(x1 (begin0 e1 e2 e3 · · ·))K = V J(x1 e1)K or V J(x1 (begin0 e2 e3 · · ·))K
V J(x1 (begin0 e1))K = V J(x1 e1)K
V J(x1 (lambda (x · · · x1 x · · ·) e e · · ·))K = #f
V J(x1 (lambda (x2 · · ·) e1 e2 · · ·))K = V J(x1 (begin e1 e2 · · ·))K

(x1 6∈ {x2 · · ·})
V J(x1 (lambda (x · · · x1 x · · · dot x) e e · · ·))K = #f
V J(x1 (lambda (x · · · dot x1) e e · · ·))K = #f
V J(x1 (lambda (x2 · · · dot x3) e1 e2 · · ·))K = V J(x1 (begin e1 e2 · · ·))K

(x1ot ∈ {x2 · · · x3})
V J(x1 x2)K = #f
V J(x1 v)K = #f
V J(x1 (dw x2 e1 e2 e3))K = V J(x1 e1)K or V J(x1 e2)K or V J(x1 e3)K
V J(x1 [])K = #f
V J(x1 ([] single))K = #f
V J(x1 ([] multi))K = #f

Figure 10.13: Variable Assignment Metafunction

x1 as a target. If there is such an assignment, the [6appN!]
rule applies. Instead of directly substituting the actual pa-
rameter for the formal parameter, it creates a new location
in the store, initially bound the actual parameter, and sub-
stitutes a variable standing for that location in place of the
formal parameter. The store, then, handles any eventual

assignment to the parameter. Once all of the parameters
have been substituted away, the rule [6app0] applies and
evaluation of the body of the procedure begins.

The next two rules handle parameters with dotted argu-
ment lists. The rule [6µapp] turns a well-formed applica-
tion of a parameter with a dotted argument list into an ap-

10. Formal semantics 71

plication of an ordinary procedure by constructing a list of
the extra arguments. The [6µarity] rule raises an exception
when such a procedure is applied to too few arguments.

The next three rules [6proct], [6procf], and [6procu] handle
applications of procedure?, and the remaining rules cover
applications of non-procedures and other arity errors.

The rules in figure 10.12 cover apply rule, [6applyf] covers
the case where the last argument to apply is the empty
list, and simply reduce by erasing the empty list and the
apply. The second rule, [6applyc] covers the case where
apply’s final argument is a pair. It reduces by extracting
the components of the pair from the store and putting them
into the application of apply. Repeated application of this
rule thus extracts all of the list elements passed to apply
out of the store. The remaining four rules cover the various
errors that can occur when using apply: applying a non-
procedure, passing a non-list as the last argument, and
supplying too few arguments to apply.

10.8. Call/cc and Dynamic Wind

The specification of dynamic-wind uses (dw x e e e) ex-
pressions to record which dynamic-wind middle thunks are
active at each point in the computation. Its first argument
is an identifier that is globally unique and serves to identify
invocations of dynamic-wind, in order to avoid exiting and
re-entering the same dynamic context during a continua-
tion switch. The second, third, and fourth arguments are
calls to some pre-thunk, middle thunk, and post thunks
from a call to dynamic-wind. Evaluation only occurs in the
middle expression; the dw expression only serves to record
which pre- and post- thunks need to be run during a con-
tinuation switch. Accordingly, the reduction rule for an
application of dynamic-wind reduces to a call to the pre-
thunk, a dw expression and a call to the post-thunk, as
shown in rule [6wind] in figure 10.14. The next two rules
cover abuses of the dynamic-wind procedure: calling it with
non-thunks, and calling it with the wrong number of argu-
ments. The [6dwdone] rule erases a dw expression when
its second argument has finished evaluating.

The next two rules cover call/cc. The rule [6call/cc] cre-
ates a new continuation. It takes the context of the call/cc
expression and packages it up into a throw expression, rep-
resenting the continuation. The throw expression uses the
fresh variable x to record where the application of call/cc
occurred in the context for use in the [6throw] rule when
the continuation is applied. That rule takes the arguments
of the continuation, wraps them with a call to values, and
puts them back into the place where the original call to
call/cc occurred, replacing the current context with the
context returned by the T metafunction.

The T metafunction accepts two D contexts and builds
a context that matches its second argument, the destina-

tion context, except that additional calls to the pre- and
post- thunks from dw expressions in the context have been
added. The first three cases in the function just simplify
both the arguments so that they are expression contexts.
If the destination context is a definition, it preserves the
definition and otherwise it abandons it.

The fourth clause of the T metafunction exploits the H
context, a context that contains everything except dw ex-
pressions. It ensures that shared parts of the dynamic-wind
context are ignored, recurring deeper into the two expres-
sion contexts as long as the first dw expression in each
have matching identifiers (x1). The final rule is a catchall;
it only applies when all the others fail and thus applies ei-
ther when there are no dws in the context, or when the dw

expressions do not match. It calls the two other metafunc-
tions defined in figure 10.14 and puts their results together
into a begin expression.

The S metafunction extracts all of the post thunks from its
argument and the R metafunction extracts all of the pre
thunks from its argument. They each construct new con-
texts and exploit H to work through their arguments, one
dw at a time. In each case, the metafunctions are careful
to keep the right dw context around each of the thunks in
case a continuation jump occurs during one of their evalu-
ations. In the case of S, all of the context except the dws
are discarded, since that was the context where the call
to the continuation occured. In contrast, the R metafunc-
tion receives the destination context, and thus keeps the
intermediate parts of the context in its result.

10.9. Library Top Level

The sequence of definitions in the body of a p models the
body of a library that does not export anything and im-
ports the primitives described by the semantics. The gram-
mar for p does not preclude alternating definitions and ex-
pressions (and indeed, the semantics assigns a meaning to
such programs), but the informal semantics does, so we
consider such programs to be malformed. They are only
modeled here to avoid the complexity of enforcing the re-
quirement that all definitions appear before any expression.
Similarly, the semantics covers multiple definitions of the
same identifier, but this also would be a syntax error, ac-
cording to the informal semantics. In this case, however,
such expressions are modeled because they can also arise
via a continuation throw and via programs that set! like
this:

(define x (set! y 1))
(define y 2)

So, the must be covered to show what happens in those sit-
uations. The only other departure from standard top-level
library syntax is the beginF expressions. The super-script

72 Revised5.92 Scheme

P1[(dynamic-wind v1 v2 v3)]→ [6wind]
P1[(begin (v1) (begin0 (dw x (v1) (v2) (v3)) (v3)))] (x fresh, A0Jv1K, A0Jv2K, A0Jv3K)

P1[(dynamic-wind v1 v2 v3)]→ [6dwerr]
P1[(raise (condition “dynamic-wind expects arity 0 procs”))] (!A0Jv1K or !A0Jv2K or !A0Jv3K)

P1[(dynamic-wind v1 · · ·)]→ [6dwarity]
P1[(raise (condition “arity mismatch”))] (#v1 6= 3)

P1[(dw x e (values v1 · · ·) e)]→ [6dwdone]
P1[(values v1 · · ·)]

(store (sf 1 · · ·) W 1[(call/cc v1)])→ [6call/cc]
(store (sf 1 · · ·) W 1[(v1 (throw x W 1[x]))]) (x fresh)

(store (sf 1 · · ·) (D1[((throw x1 (D2[x1] d1 · · ·)) v1 · · ·)] d2 · · ·))→ [6throw]
(store (sf 1 · · ·) (T J(D1 D2)K[(values v1 · · ·)] d1 · · ·))

T J((define x1 E1) (define x2 E2))K = (define x2 T J(E1 E2)K)
T J(E1 (define x2 E2))K = (define x2 T J(E1 E2)K)
T J((define x1 E1) E2)K = T J(E1 E2)K
T J(H 1[(dw x1 e1 E1 e2)] H 2[(dw x1 e3 E2 e4)])K = H 2[(dw x1 e3 T J(E1 E2)K e4)]
T J(E1 E2)K = (begin SJE1K[1] RJE2K)

S JE1[(dw x1 e1 H 2 e2)]K = S JE1K[(begin0 (dw x1 e1 [] e2) e2)]
S JH 1K = []

RJH 1[(dw x1 e1 E1 e2)]K = H 1[(begin e1 (dw x1 e1 RJE1K e2))]
RJH 1K = H 1

Figure 10.14: Call/cc and Dynamic Wind

F serves to distinguish a begin expression whose subex-
pressions can be forms from one whose subexpressions are
ordinary expressions.

The first rule in figure 10.15 covers the definition of a vari-
able, and merely moves it into the store. The second rule
covers re-definition of a variable, and it updates the store
with the new value. The third rule drops a fully evaluated
expression, unless it is the last one and the fourth rule adds
a single expression if there are none, in order to guarantee
that there is always some result to a program.

The [6beginF] rule splices beginF expressions into their
context. The [6var] rule extracts a value from the store and
[6set] updates a value in the store, returning the unspecified
value. The rule [6setf] handles an assignment to a variable
whose definition has not yet been evaluated. The next two
rules, [6setu] and [6refu] handle reference and assignment
of free variables. Finally, the last two rules dictate the
behavior of the unspecified? predicate.

10.10. Underspecification

The rules in figure 10.16 cover aspects of the semantics
that are explicitly unspecified. Implementations can re-
place these rules with different rules that cover the left-
hand sides and, as long as they follow the informal specifi-
cation, any replacement is valid.

The three situations are eqv? applied to two procedures
or two conditions, and multiple values in a single-value
context.

10. Formal semantics 73

(store (sf 1 · · ·) ((define x1 v1) d1 · · ·))→ [6def]
(store (sf 1 · · · (x1 v1)) (d1 · · ·)) (x1 6∈ dom(sf 1 · · ·))

(store (sf 1 · · · (x1 v1) sf 2 · · ·) ((define x1 v2) d1 · · ·))→ [6redef]
(store (sf 1 · · · (x1 v2) sf 2 · · ·) (d1 · · ·))

(store (sf 1 · · ·) ((values v1 · · ·) d1 d2 · · ·))→ [6valdrop]
(store (sf 1 · · ·) (d1 d2 · · ·))

(store (sf 1 · · ·) ())→ [6valadd]
(store (sf 1 · · ·) ((values (unspecified))))

(store (sf 1 · · ·) ((beginF d1 · · ·) d2 · · ·))→ [6beginF]
(store (sf 1 · · ·) (d1 · · · d2 · · ·))

(store (sf 1 · · · (x1 v1) sf 2 · · ·) W 1[x1])→ [6var]
(store (sf 1 · · · (x1 v1) sf 2 · · ·) W 1[v1])

(store (sf 1 · · · (x1 v1) sf 2 · · ·) W 1[(set! x1 v2)])→ [6set]
(store (sf 1 · · · (x1 v2) sf 2 · · ·) W 1[(unspecified)])

(store (sf 1 · · ·) (D1[(set! x1 v2)] d1 · · · (define x1 e1) d2 · · ·))→ [6setd]
(store (sf 1 · · · (x1 v2)) (D1[(unspecified)] d1 · · · (define x1 e1) d2 · · ·)) (x1 6∈ dom(sf 1 · · ·))

(store (sf 1 · · ·) (D1[x1] d1 · · ·))→ [6refu]
(store (sf 1 · · ·) (D1[(raise (condition (format “reference to undefined identifier: ˜a” x1)))] d1 · · ·))

(x1 6∈ dom(sf 1 · · ·))

(store (sf 1 · · ·) (D1[(set! x1 v2)] d1 · · ·))→ [6setu]
(store (sf 1 · · ·) (D1[(raise (condition (format “set!: cannot set undefined identifier: ˜a” x1)))] d1 · · ·))

(x1 6∈ dom(sf 1 · · ·), x1 not defined by d1 · · ·)

P1[(unspecified? (unspecified))]→ [6unspec?t]
P1[#t]

P1[(unspecified? v1)]→ [6unspec?f]
P1[#f] (v1 6= (unspecified))

Figure 10.15: Library Top Level

P [(eqv? uproc uproc)] → unknown: equivalence of procedures [6ueqv]

P [(eqv? v1 v2)] → unknown: equivalence of conditions [6ueqc]
(v1 = (condition string) or v2 = (condition string))

P [(values v1 · · ·)]◦ → unknown: context expected one value, received #v1 [6uval]
(#v1 6= 1)

Figure 10.16: Explicitly Unspecified Behavior

74 Revised5.92 Scheme

APPENDICES

Appendix A. Sample definitions for de-
rived forms

This appendix contains sample definitions for some of the
keywords described in this report in terms of simpler forms:

cond

The cond keyword (section 9.5.5) could be defined in terms
of if, let and begin using syntax-rules (see section 9.21)
as follows:

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

case

The case keyword (section 9.5.5) could be defined in
terms of let, cond, and memv (see library chapter 3) using
syntax-rules (see section 9.21) as follows:

(define-syntax case

(syntax-rules (else)

((case expr0

((key ...) res1 res2 ...)

...

(else else-res1 else-res2 ...))

(let ((tmp expr0))

(cond

((memv tmp ’(key ...)) res1 res2 ...)

...

(else else-res1 else-res2 ...))))

((case expr0

((keya ...) res1a res2a ...)

((keyb ...) res1b res2b ...)

...)

(let ((tmp expr0))

(cond

((memv tmp ’(keya ...)) res1a res2a ...)

((memv tmp ’(keyb ...)) res1b res2b ...)

...)))))

letrec

The letrec keyword (section 9.5.6) could be defined ap-
proximately in terms of let and set! using syntax-rules

(see section 9.21), using a helper to generate the temporary
variables needed to hold the values before the assignments
are made, as follows:

(define-syntax letrec

(syntax-rules ()

((letrec () body1 body2 ...)

(let () body1 body2 ...))

((letrec ((var init) ...) body1 body2 ...)

(letrec-helper

(var ...)

()

((var init) ...)

body1 body2 ...))))

(define-syntax letrec-helper

(syntax-rules ()

((letrec-helper

()

(temp ...)

((var init) ...)

body1 body2 ...)

(let ((var <undefined>) ...)

(let ((temp init) ...)

(set! var temp)

...)

(let () body1 body2 ...)))

((letrec-helper

(x y ...)

(temp ...)

((var init) ...)

body1 body2 ...)

(letrec-helper

(y ...)

(newtemp temp ...)

((var init) ...)

body1 body2 ...))))

The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &assertion to be raised if
an attempt to read to or write from the location occurs be-

Appendix B. Additional material 75

fore the assignments generated by the letrec transforma-
tion take place. (No such expression is defined in Scheme.)

let-values

The following definition of let-values (section 9.5.6) us-
ing syntax-rules (see section 9.21) employs a pair of
helpers to create temporary names for the formals.

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body1 body2 ...)

(let-values-helper1

()

(binding ...)

body1 body2 ...))))

(define-syntax let-values-helper1

;; map over the bindings

(syntax-rules ()

((let-values

((id temp) ...)

()

body1 body2 ...)

(let ((id temp) ...) body1 body2 ...))

((let-values

assocs

((formals1 expr1) (formals2 expr2) ...)

body1 body2 ...)

(let-values-helper2

formals1

()

expr1

assocs

((formals2 expr2) ...)

body1 body2 ...))))

(define-syntax let-values-helper2

;; create temporaries for the formals

(syntax-rules ()

((let-values-helper2

()

temp-formals

expr1

assocs

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda temp-formals

(let-values-helper1

assocs

bindings

body1 body2 ...))))

((let-values-helper2

(first . rest)

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(let-values-helper2

rest

(temp ... newtemp)

expr1

(assoc ... (first newtemp))

bindings

body1 body2 ...))

((let-values-helper2

rest-formal

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda (temp newtemp)

(let-values-helper1

(assoc ... (rest-formal newtemp))

bindings

body1 body2 ...))))))

Appendix B. Additional material

This report itself, as well as more material related to this
report such as reference implementations of some parts of
Scheme and archives of mailing lists discussing this report
is at

http://www.r6rs.org/

The Schemers web site at

http://www.schemers.org/

as well as the Readscheme site at

http://library.readscheme.org/

contain extensive Scheme bibliographies, as well as papers,
programs, implementations, and other material related to
Scheme.

Appendix C. Example

This section describes an example consisting of
the (runge-kutta) library, which provides an
integrate-system procedure that integrates the system

y′

k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

As the (runge-kutta) library makes use of the (r6rs

base) libraries, the library skeleton looks as follows:

#!r6rs

(library (runge-kutta)

(export integrate-system)

(import (r6rs base))

〈library body〉)

76 Revised5.92 Scheme

The procedure definitions go in the place of 〈library body〉
described below:

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . . . , yn) and produces a system derivative (the val-
ues y′

1, . . . , y
′

n). The parameter initial-state provides
an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infinite
stream of system states.

(define integrate-system

(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(lambda () (map-streams next

states)))))

states))))

The runge-kutta-4 procedure takes a function, f, that
produces a system derivative from a system state. The
runge-kutta-4 procedure produces a function that takes
a system state and produces a new system state.

(define runge-kutta-4

(lambda (f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3))))))))

(define elementwise

(lambda (f)

(lambda vectors

(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors)))))))

(define generate-vector

(lambda (size proc)

(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector

(lambda (s)

(elementwise (lambda (x) (* x s)))))

The map-streams procedure is analogous to map: it applies
its first argument (a procedure) to all the elements of its
second argument (a stream).

(define map-streams

(lambda (f s)

(cons (f (head s))

(lambda () (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds
the first element of the stream and whose cdr holds a pro-
cedure that delivers the rest of the stream.

(define head car)

(define tail

(lambda (stream) ((cdr stream))))

The following program illustrates the use of
integrate-system in integrating the system

C
dvC

dt
= −iL −

vC

R

L
diL
dt

= vC

which models a damped oscillator.

#!r6rs

(import (r6rs base)

(r6rs i/o simple)

(runge-kutta))

(define damped-oscillator

(lambda (R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

(define the-states

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01))

(letrec ((loop (lambda (s)

(newline)

(write (head s))

(loop (tail s)))))

(loop the-states))

References 77

This prints output like the following:

#(1 0)

#(0.99895054 9.994835e-6)

#(0.99780226 1.9978681e-5)

#(0.9965554 2.9950552e-5)

#(0.9952102 3.990946e-5)

#(0.99376684 4.985443e-5)

#(0.99222565 5.9784474e-5)

#(0.9905868 6.969862e-5)

#(0.9888506 7.9595884e-5)

#(0.9870173 8.94753e-5)

REFERENCES

[1] Harold Abelson, Gerald Jay Sussman, and Julie Suss-
man. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Mass., second edition,
1996.

[2] J. W. Backus, F.L. Bauer, J.Green, C. Katz, J. Mc-
Carthy P. Naur, A. J. Perlis, H. Rutishauser,
K. Samuelson, B. Vauquois J. H. Wegstein, A. van
Wijngaarden, and M. Woodger. Revised report on
the algorithmic language Algol 60. Communications
of the ACM, 6(1):1–17, 1963.

[3] Alan Bawden and Jonathan Rees. Syntactic closures.
In ACM Conference on Lisp and Functional Program-
ming, pages 86–95, Snowbird, Utah, 1988. ACM Press.

[4] Scott Bradner. Key words for use in RFCs to indi-
cate requirement levels. http://www.ietf.org/rfc/
rfc2119.txt, March 1997. RFC 2119.

[5] Robert G. Burger and R. Kent Dybvig. Print-
ing floating-point numbers quickly and accurately.
In Proc. of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation,
pages 108–116, Philadelphia, PA, USA, May 1996.
ACM Press.

[6] Will Clinger, R. Kent Dybvig, Michael Sperber, and
Anton van Straaten. SRFI 76: R6RS records. http:/
/srfi.schemers.org/srfi-76/, 2005.

[7] William Clinger. The revised revised report on
Scheme, or an uncommon Lisp. Technical Report
MIT Artificial Intelligence Memo 848, MIT, 1985
1985. Also published as Computer Science Depart-
ment Technical Report 174, Indiana University, June
1985.

[8] William Clinger. Proper tail recursion and space
efficiency. In Keith Cooper, editor, Proceedings of
the 1998 Conference on Programming Language De-
sign and Implementation, pages 174–185, Montreal,
Canada, June 1998. ACM Press. Volume 33(5) of SIG-
PLAN Notices.

[9] William Clinger and Jonathan Rees. Revised3 report
on the algorithmic language Scheme. SIGPLAN No-
tices, 21(12):37–79, December 1986.

[10] William Clinger and Jonathan Rees. Macros that
work. In Proc. 1991 ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 155–162,
Orlando, Florida, January 1991. ACM Press.

[11] William Clinger and Jonathan Rees. Revised4 report
on the algorithmic language Scheme. Lisp Pointers,
IV(3):1–55, July–September 1991.

[12] William D. Clinger. How to read floating point num-
bers accurately. In Proc. Conference on Programming
Language Design and Implementation ’90, pages 92–
101, White Plains, New York, USA, June 1990. ACM.

[13] William D Clinger and Michael Sperber. SRFI 77:
Preliminary proposal for R6RS arithmetic. http://

srfi.schemers.org/srfi-77/, 2005.

[14] R. Kent Dybvig. The Scheme Programming Language.
MIT Press, Cambridge, third edition, 2003. http://

www.scheme.com/tspl3/.

[15] R. Kent Dybvig. Chez Scheme Version 7 User’s
Guide. Cadence Research Systems, 2005. http://

www.scheme.com/csug7/.

[16] R. Kent Dybvig. SRFI 93: R6RS syntax-case

macros. http://srfi.schemers.org/srfi-93/,
2006.

[17] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation, 1(1):53–75, 1988.

[18] Matthias Felleisen and Matthew Flatt. Programming
languages and lambda calculi. http://www.cs.utah.
edu/plt/publications/pllc.pdf, 2003.

[19] Carol Fessenden, William Clinger, Daniel P. Fried-
man, and Christopher Haynes. Scheme 311 version
4 reference manual. Indiana University, 1983. Indiana
University Computer Science Technical Report 137,
Superseded by [23].

[20] Matthew Flatt. PLT MzScheme: Language Man-
ual. Rice University, University of Utah, July
2006. http://download.plt-scheme.org/doc/352/

html/mzscheme/.

[21] Matthew Flatt and Kent Dybvig. SRFI 83: R6RS li-
brary syntax. http://srfi.schemers.org/srfi-83/
, 2005.

[22] Matthew Flatt and Mark Feeley. SRFI 75: R6RS uni-
code data. http://srfi.schemers.org/srfi-75/,
2005.

78 Revised5.92 Scheme

[23] Daniel P. Friedman, Christopher Haynes, Eugene
Kohlbecker, and Mitchell Wand. Scheme 84 interim
reference manual. Indiana University, January 1985.
Indiana University Computer Science Technical Re-
port 153.

[24] Lars T Hansen. SRFI 11: Syntax for receiving mul-
tiple values. http://srfi.schemers.org/srfi-11/,
2000.

[25] IEEE standard 754-1985. IEEE standard for binary
floating-point arithmetic, 1985. Reprinted in SIG-
PLAN Notices, 22(2):9-25, 1987.

[26] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–
105, 1998.

[27] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion.
In Proceedings of the 1986 ACM Conference on Lisp
and Functional Programming, pages 151–161, 1986.

[28] Eugene E. Kohlbecker Jr. Syntactic Extensions in
the Programming Language Lisp. PhD thesis, Indiana
University, August 1986.

[29] Peter Landin. A correspondence between Algol 60 and
Church’s lambda notation: Part I. Communications
of the ACM, 8(2):89–101, February 1965.

[30] Jacob Matthews and Robert Bruce Findler. An op-
erational semantics for R5RS Scheme. In J. Michael
Ashley and Michael Sperber, editors, Proceedings of
the Sixth Workshop on Scheme and Functional Pro-
gramming, pages 41–54, Tallin, Estonia, September
2005. Indiana University Technical Report TR619.

[31] Jacob Matthews and Robert Bruce Findler. Oper-
ational semantics for multi-language programs. In
Matthias Felleisen, editor, Proc. 34rd Annual ACM
Symposium on Principles of Programming Languages,
Nice, France, January 2007. ACM Press.

[32] Jacob Matthews, Robert Bruce Findler, Matthew
Flatt, and Matthias Felleisen. A visual environment
for developing context-sensitive term rewriting sys-
tems. In Proc. 15th Conference on Rewriting Tech-
niques and Applications, Aachen, June 2004. Springer-
Verlag.

[33] MIT Department of Electrical Engineering and Com-
puter Science. Scheme manual, seventh edition,
September 1984.

[34] Paul Penfield Jr. Principal values and branch cuts in
complex APL. In APL ’81 Conference Proceedings,
pages 248–256, San Francisco, September 1981. ACM

SIGAPL. Proceedings published as APL Quote Quad
12(1).

[35] Kent M. Pitman. The revised MacLisp manual (Sat-
urday evening edition). MIT, May 1983. MIT Labo-
ratory for Computer Science Technical Report 295.

[36] Jonathan A. Rees and Norman I. Adams IV. T: a
dialect of lisp or lambda: The ultimate software tool.
In ACM Conference on Lisp and Functional Program-
ming, pages 114–122, Pittsburgh, Pennsylvania, 1982.
ACM Press.

[37] Jonathan A. Rees, Norman I. Adams IV, and James R.
Meehan. The T manual. Yale University Computer
Science Department, fourth edition, January 1984.

[38] John C. Reynolds. Definitional interpreters for higher-
order programming languages. In ACM Annual Con-
ference, pages 717–740, July 1972.

[39] Scheme standardization charter. http://www.

schemers.org/Documents/Standards/Charter/

mar-2006.txt, March 2006.

[40] Michael Sperber, William Clinger, R. Kent Dybvig,
Matthew Flatt, Anton van Straaten, Richard Kelsey,
and Jonathan Rees. Revised6 report on the algorith-
mic language Scheme — libraries —. http://www.

r6rs.org/, 2007.

[41] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme.
Technical Report MIT Artificial Intelligence Labora-
tory Technical Report 474, MIT, May 1978.

[42] Guy Lewis Steele Jr. Common Lisp: The Language.
Digital Press, Burlington, MA, second edition, 1990.

[43] Guy Lewis Steele Jr. and Gerald Jay Sussman. The
revised report on Scheme, a dialect of Lisp. Technical
Report MIT Artificial Intelligence Memo 452, MIT,
January 1978.

[44] Gerald Jay Sussman and Guy Lewis Steele Jr. Scheme:
an interpreter for extended lambda calculus. Technical
Report MIT Artificial Intelligence Memo 349, MIT,
December 1975.

[45] Texas Instruments, Inc. TI Scheme Language Ref-
erence Manual, November 1985. Preliminary version
1.0.

[46] The Unicode Consortium. The Unicode standard, ver-
sion 5.0.0. defined by: The Unicode Standard, Version
5.0 (Boston, MA, Addison-Wesley, 2007. ISBN 0-321-
48091-0), 2007.

[47] William M. Waite and Gerhard Goos. Compiler Con-
struction. Springer-Verlag, 1984.

References 79

[48] Andrew Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and Com-
putation, 115(1):38–94, 1994. First appeared as Tech-
nical Report TR160, Rice University, 1991.

80 Revised5.92 Scheme

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS, KEYWORDS, AND
PROCEDURES

The index includes entries from the library document; the
entries are marked with “(library)”.

!, 22
#,@, 17
&, 22
’, 17
#’, 17
*, 43
+, 13, 43
,, 17
#,, 17
,@, 17
-, 13, 22, 43
->, 22
->exact, 41
->inexact, 41
..., 13, 44 (library), 58
/, 43
;, 13
<, 42
<=, 42
=, 42
=>, 33
>, 42
>=, 42
?, 22
#‘, 17
‘, 17

abs, 43
acos, 44
and, 33, 34
angle, 45
antimark, 43 (library)
append, 47
apply, 52, 60
asin, 44
&assertion, 23 (library)
assertion-violation, 52
assertion-violation?, 23 (library)
assignment, 8
assoc, 11 (library)
assp, 11 (library)
assq, 11 (library)
assv, 11 (library)
atan, 44

#b, 13, 15
backquote, 55
begin, 36
binary port, 25 (library)

binary transcoder, 27 (library)
binary-port?, 28 (library)
binary-transcoder, 28 (library)
binding, 7, 17
binding construct, 17
bitwise-and, 41 (library)
bitwise-arithmetic-shift, 42 (library)
bitwise-arithmetic-shift-left, 42 (library)
bitwise-arithmetic-shift-right, 42 (library)
bitwise-bit-count, 41 (library)
bitwise-bit-field, 41 (library)
bitwise-bit-set?, 41 (library)
bitwise-copy-bit, 41 (library)
bitwise-copy-bit-field, 41 (library)
bitwise-first-bit-set, 41 (library)
bitwise-if, 41 (library)
bitwise-ior, 41 (library)
bitwise-length, 41 (library)
bitwise-not, 41 (library)
bitwise-reverse-bit-field, 42 (library)
bitwise-rotate-bit-field, 42 (library)
bitwise-xor, 41 (library)
body, 31
boolean, 6
boolean?, 30, 46
bound, 18
bound-identifier=?, 46 (library)
buffer-mode, 26 (library)
buffer-mode?, 26 (library)
byte, 5 (library)
bytevector, 5 (library)
bytevector->sint-list, 7 (library)
bytevector->string, 28 (library)
bytevector->u8-list, 6 (library)
bytevector->uint-list, 7 (library)
bytevector-copy, 6 (library)
bytevector-copy!, 5 (library)
bytevector-fill!, 5 (library)
bytevector-ieee-double-native-ref, 8 (library)
bytevector-ieee-double-native-set!, 9 (library)
bytevector-ieee-double-ref, 8 (library)
bytevector-ieee-single-native-ref, 8 (library)
bytevector-ieee-single-native-set!, 9 (library)
bytevector-ieee-single-ref, 8 (library)
bytevector-length, 5 (library)
bytevector-s16-native-ref, 7 (library)
bytevector-s16-native-set!, 7 (library)
bytevector-s16-ref, 7 (library)
bytevector-s16-set!, 7 (library)
bytevector-s32-native-ref, 8 (library)
bytevector-s32-native-set!, 8 (library)

Index 81

bytevector-s32-ref, 8 (library)
bytevector-s32-set!, 8 (library)
bytevector-s64-native-ref, 8 (library)
bytevector-s64-native-set!, 8 (library)
bytevector-s64-ref, 8 (library)
bytevector-s64-set!, 8 (library)
bytevector-s8-ref, 6 (library)
bytevector-s8-set!, 6 (library)
bytevector-sint-ref, 6 (library)
bytevector-sint-set!, 6 (library)
bytevector-u16-native-ref, 7 (library)
bytevector-u16-native-set!, 7 (library)
bytevector-u16-ref, 7 (library)
bytevector-u16-set!, 7 (library)
bytevector-u32-native-ref, 8 (library)
bytevector-u32-native-set!, 8 (library)
bytevector-u32-ref, 8 (library)
bytevector-u32-set!, 8 (library)
bytevector-u64-native-ref, 8 (library)
bytevector-u64-native-set!, 8 (library)
bytevector-u64-ref, 8 (library)
bytevector-u64-set!, 8 (library)
bytevector-u8-ref, 6 (library)
bytevector-u8-set!, 6 (library)
bytevector-uint-ref, 6 (library)
bytevector-uint-set!, 6 (library)
bytevector=?, 5 (library)
bytevector?, 5 (library)

caar, 47
cadr, 47
call, 26
call by need, 57 (library)
call-with-bytevector-output-port, 33 (library)
call-with-current-continuation, 52, 54, 60
call-with-input-file, 34 (library)
call-with-output-file, 34 (library)
call-with-port, 29 (library)
call-with-string-output-port, 33 (library)
call-with-values, 53, 60
call/cc, 52, 53
car, 47
case, 33, 74
case-lambda, 55 (library), 58 (library)
case-lambda-helper, 58 (library)
case-lambda-helper-dotted, 58 (library)
catch, 53
cdddar, 47
cddddr, 47
cdr, 47
ceiling, 44
char->integer, 49
char-alphabetic?, 3 (library)
char-ci<=?, 3 (library)
char-ci<?, 3 (library)

char-ci=?, 3 (library)
char-ci>=?, 3 (library)
char-ci>?, 3 (library)
char-downcase, 3 (library)
char-foldcase, 3 (library)
char-general-category, 4 (library)
char-lower-case?, 3 (library)
char-numeric?, 3 (library)
char-title-case?, 3 (library)
char-titlecase, 3 (library)
char-upcase, 3 (library)
char-upper-case?, 3 (library)
char-whitespace?, 3 (library)
char<=?, 50
char<?, 50
char=?, 50
char>=?, 50
char>?, 50
char?, 30, 49
character, 7
Characters, 49
close-input-port, 35 (library)
close-output-port, 35 (library)
close-port, 29 (library)
code point, 49
codec, 26 (library)
command-line, 55 (library)
command-line arguments, 28
comment, 12, 13
complex?, 10, 40
compound condition, 21 (library)
cond, 33, 59, 74
&condition, 22 (library)
condition, 22 (library)
condition->list, 21 (library)
condition-has-type?, 21 (library)
condition-irritants, 24 (library)
condition-message, 22 (library)
condition-ref, 21 (library)
condition-type?, 21 (library)
condition-who, 24 (library)
condition?, 21 (library)
cons, 47
constant, 19
constructor descriptor, 13 (library)
continuation, 53
core form, 29
cos, 44
current exception handler, 19 (library)
current-input-port, 34 (library)
current-output-port, 34 (library)

#d, 15
datum, 11
datum value, 9, 11

82 Revised5.92 Scheme

datum->syntax, 47 (library)
define, 30
define-condition-type, 21 (library)
define-enumeration, 54 (library)
define-record-type, 15 (library)
define-syntax, 31
definition, 7, 17, 24, 30
delay, 57 (library)
delete-file, 36 (library)
denominator, 44
derived form, 9
display, 35 (library)
div, 43
div-and-mod, 43
div0, 43
div0-and-mod0, 43
do, 55
dotted pair, 46
dynamic environment, 19 (library)
dynamic-wind, 53, 54

#e, 13, 15
else, 33
empty list, 16, 30, 46, 47
end of file object, 28 (library)
endianness, 5 (library)
enum-set->list, 53 (library)
enum-set-complement, 54 (library)
enum-set-constructor, 53 (library)
enum-set-difference, 53 (library)
enum-set-indexer, 53 (library)
enum-set-intersection, 53 (library)
enum-set-member?, 53 (library)
enum-set-projection, 54 (library)
enum-set-subset?, 53 (library)
enum-set-union, 53 (library)
enum-set-universe, 53 (library)
enum-set=?, 53 (library)
enumeration, 52 (library)
enumeration sets, 52 (library)
enumeration type, 52 (library)
environment, 56 (library)
eof-object, 28 (library), 34 (library)
eof-object?, 28 (library), 34 (library)
eol-style, 27 (library)
eq?, 32, 38
equal-hash, 52 (library)
equal?, 38
equivalence function, 50 (library)
equivalence predicate, 36
eqv?, 19, 32, 37
&error, 23 (library)
error, 52
error-handling-mode, 27 (library)
error?, 23 (library)

escape procedure, 52
escape sequence, 14
eval, 56 (library)
even?, 42
exact, 37
exact->inexact, 56 (library)
exact-integer-sqrt, 45
exact?, 41
exactness, 10
exception, 21 (library)
exceptional situation, 18, 21 (library)
exceptions, 19 (library)
exists, 9 (library)
exit, 55 (library)
exp, 44
export, 23
expression, 7, 24
expt, 45
external representation, 11

#f, 14, 46
false, 19
file options, 26 (library)
file-exists?, 35 (library)
file-options, 26 (library)
filter, 9 (library)
find, 9 (library)
finite?, 42
fixnum, 10
fixnum->flonum, 40 (library)
fl, 22
fl*, 39 (library)
fl+, 39 (library)
fl-, 39 (library)
fl/, 39 (library)
fl<=?, 38 (library)
fl<?, 38 (library)
fl=?, 38 (library)
fl>=?, 38 (library)
fl>?, 38 (library)
flabs, 39 (library)
flacos, 40 (library)
flasin, 40 (library)
flatan, 40 (library)
flceiling, 40 (library)
flcos, 40 (library)
fldenominator, 39 (library)
fldiv, 39 (library)
fldiv-and-mod, 39 (library)
fldiv0, 39 (library)
fldiv0-and-mod0, 39 (library)
fleven?, 39 (library)
flexp, 40 (library)
flexpt, 40 (library)
flfinite?, 39 (library)

Index 83

flfloor, 40 (library)
flinfinite?, 39 (library)
flinteger?, 39 (library)
fllog, 40 (library)
flmax, 39 (library)
flmin, 39 (library)
flmod, 39 (library)
flmod0, 39 (library)
flnan?, 39 (library)
flnegative?, 39 (library)
flnumerator, 39 (library)
flodd?, 39 (library)
flonum, 10
flonum?, 38 (library)
floor, 44
flpositive?, 39 (library)
flround, 40 (library)
flsin, 40 (library)
flsqrt, 40 (library)
fltan, 40 (library)
fltruncate, 40 (library)
flush-output-port, 32 (library)
flzero?, 39 (library)
fold-left, 10 (library)
fold-right, 10 (library)
for-all, 9 (library)
for-each, 48
force, 57 (library)
form, 11
free-identifier=?, 46 (library)
fx, 22
fx*, 36 (library)
fx*/carry, 37 (library)
fx+, 36 (library)
fx+/carry, 37 (library)
fx-, 36 (library)
fx-/carry, 37 (library)
fx<=?, 36 (library)
fx<?, 36 (library)
fx=?, 36 (library)
fx>=?, 36 (library)
fx>?, 36 (library)
fxand, 37 (library)
fxarithmetic-shift, 38 (library)
fxarithmetic-shift-left, 38 (library)
fxarithmetic-shift-right, 38 (library)
fxbit-count, 37 (library)
fxbit-field, 37 (library)
fxbit-set?, 37 (library)
fxcopy-bit, 37 (library)
fxcopy-bit-field, 38 (library)
fxdiv, 36 (library)
fxdiv-and-mod, 36 (library)
fxdiv0, 36 (library)
fxdiv0-and-mod0, 36 (library)

fxeven?, 36 (library)
fxfirst-bit-set, 37 (library)
fxif, 37 (library)
fxior, 37 (library)
fxlength, 37 (library)
fxmax, 36 (library)
fxmin, 36 (library)
fxmod, 36 (library)
fxmod0, 36 (library)
fxnegative?, 36 (library)
fxnot, 37 (library)
fxodd?, 36 (library)
fxpositive?, 36 (library)
fxreverse-bit-field, 38 (library)
fxrotate-bit-field, 38 (library)
fxxor, 37 (library)
fxzero?, 36 (library)

gcd, 43
generate-temporaries, 48 (library)
get-bytevector-all, 31 (library)
get-bytevector-n, 30 (library)
get-bytevector-n!, 31 (library)
get-bytevector-some, 31 (library)
get-char, 31 (library)
get-datum, 32 (library)
get-line, 32 (library)
get-string-all, 31 (library)
get-string-n, 31 (library)
get-string-n!, 31 (library)
get-u8, 30 (library)
guard, 20 (library)

hash function, 50 (library)
hash table, 50, 51 (library)
hash-table-clear!, 52 (library)
hash-table-contains?, 51 (library)
hash-table-copy, 52 (library)
hash-table-delete!, 51 (library)
hash-table-entries, 52 (library)
hash-table-equivalence-function, 52 (library)
hash-table-hash-function, 52 (library)
hash-table-keys, 52 (library)
hash-table-mutable?, 52 (library)
hash-table-ref, 51 (library)
hash-table-set!, 51 (library)
hash-table-size, 51 (library)
hash-table-update!, 51 (library)
hash-table?, 51 (library)
hole, 61
hygienic, 27

#i, 13, 15
&i/o, 24 (library)
&i/o-decoding, 27 (library)
i/o-decoding-error?, 27 (library)

84 Revised5.92 Scheme

&i/o-encoding, 27 (library)
i/o-encoding-error-char, 27 (library)
i/o-encoding-error-transcoder, 27 (library)
i/o-encoding-error?, 27 (library)
i/o-error-filename, 25 (library)
i/o-error-port, 25 (library)
i/o-error?, 24 (library)
i/o-exists-not-error?, 25 (library)
&i/o-file-already-exists, 25 (library)
i/o-file-already-exists-error?, 25 (library)
&i/o-file-exists-not, 25 (library)
&i/o-file-is-read-only, 25 (library)
i/o-file-is-read-only-error?, 25 (library)
&i/o-file-protection, 25 (library)
i/o-file-protection-error?, 25 (library)
&i/o-filename, 25 (library)
i/o-filename-error?, 25 (library)
&i/o-invalid-position, 24 (library)
i/o-invalid-position-error?, 24 (library)
&i/o-port, 25 (library)
i/o-port-error?, 25 (library)
&i/o-read, 24 (library)
i/o-read-error?, 24 (library)
&i/o-write, 24 (library)
i/o-write-error?, 24 (library)
identifier, 7, 12, 13, 17, 43 (library), 49
identifier macro, 46 (library)
identifier-syntax, 59
identifier?, 46 (library)
if, 32
imag-part, 45
immutable, 19
implementation restriction, 10, 18
&implementation-restriction, 23 (library)
implementation-restriction?, 23 (library)
implicit identifier, 47 (library)
import, 23
import level, 25
improper list, 47
inexact, 37
inexact->exact, 56 (library)
inexact?, 41
infinite?, 42
input port, 25 (library)
input-port?, 29 (library)
integer->char, 49
integer-valued?, 41
integer?, 10, 40
internal definition, 31
&irritants, 24 (library)
irritants-condition?, 24 (library)

keyword, 27

lambda, 31, 32
latin-1-codec, 27 (library)

lazy evaluation, 57 (library)
lcm, 43
length, 47
let, 31, 34, 54, 55, 59
let*, 31, 34
let*-values, 31, 36
let-syntax, 56
let-values, 31, 35
letrec, 31, 35, 74
letrec*, 31, 35
letrec-syntax, 57
level, 25
lexeme, 12
&lexical, 23 (library)
lexical-violation?, 23 (library)
library, 9, 17, 22
library, 23
library specifier, 56 (library)
list, 7
list, 47
list->string, 51
list->vector, 51
list-ref, 48
list-sort, 12 (library)
list-tail, 48
list?, 47
literal, 26
location, 19
log, 44
lookahead-char, 31 (library)
lookahead-u8, 30 (library)

macro, 9, 27
macro keyword, 27
macro transformer, 27
magnitude, 45
make-bytevector, 5 (library)
make-compound-condition, 21 (library)
make-condition, 21 (library)
make-condition-type, 21 (library)
make-custom-binary-input-port, 30 (library)
make-custom-binary-input/output-port, 34 (library)
make-custom-binary-output-port, 33 (library)
make-enumeration, 53 (library)
make-eq-hash-table, 51 (library)
make-eqv-hash-table, 51 (library)
make-hash-table, 51 (library)
make-polar, 45
make-record-constructor-descriptor, 13 (library)
make-record-type-descriptor, 12 (library)
make-rectangular, 45
make-string, 50
make-transcoder, 28 (library)
make-variable-transformer, 44 (library)
make-vector, 51

Index 85

map, 48
mark, 43 (library)
max, 42
member, 11 (library)
memp, 11 (library)
memq, 11 (library)
memv, 11 (library)
&message, 22 (library)
message-condition?, 22 (library)
min, 42
mod, 43
mod0, 43
modulo, 57 (library)
mutable, 19

nan?, 42
native-endianness, 5 (library)
native-eol-style, 27 (library)
negative?, 42
newline, 35 (library)
nil, 46
&no-infinities, 40 (library)
no-infinities?, 40 (library)
&no-nans, 40 (library)
no-nans?, 40 (library)
&non-continuable, 23 (library)
non-continuable?, 23 (library)
not, 46
null-environment, 58 (library)
null?, 30, 47
number, 6, 10, 36 (library)
number->string, 45
number?, 10, 30, 40
numerator, 44
numerical types, 10

#o, 13, 15
object, 6
octet, 5 (library)
odd?, 42
open-bytevector-input-port, 30 (library)
open-bytevector-output-port, 32 (library)
open-file-input-port, 29 (library)
open-file-input/output-port, 34 (library)
open-file-output-port, 32 (library)
open-input-file, 35 (library)
open-output-file, 35 (library)
open-string-input-port, 30 (library)
open-string-output-port, 33 (library)
operand, 7
operator, 7
or, 34
output ports, 25 (library)
output-port-buffer-mode, 32 (library)
output-port?, 32 (library)

pair, 7, 46
pair?, 30, 47
partition, 9 (library)
pattern variable, 44 (library), 58
peek-char, 35 (library)
phase, 25
port, 25 (library)
port-eof?, 29 (library)
port-has-port-position?, 29 (library)
port-has-set-port-position!?, 29 (library)
port-position, 29 (library)
port-transcoder, 28 (library)
port?, 28 (library)
position, 28 (library)
positive?, 42
predicate, 36
prefix notation, 7
procedure, 7, 8
procedure call, 8, 26
procedure?, 30, 39
promise, 57 (library)
proper tail recursion, 19
protocol, 14 (library)
put-bytevector, 33 (library)
put-char, 34 (library)
put-datum, 34 (library)
put-string, 34 (library)
put-string-n, 34 (library)
put-u8, 33 (library)

quasiquote, 55, 56
quasisyntax, 49 (library)
quote, 31
quotient, 57 (library)

(r6rs), 55 (library)
(r6rs arithmetic bitwise), 41 (library)
(r6rs arithmetic flonum), 38 (library)
(r6rs arithmetic fx), 36 (library)
(r6rs base), 30
(r6rs bytevector), 5 (library)
(r6rs case-lambda), 55 (library)
(r6rs conditions), 21 (library)
(r6rs enum), 52 (library)
(r6rs exceptions), 19 (library)
(r6rs files), 35 (library)
(r6rs hash-tables), 50 (library)
(r6rs i/o ports), 25 (library)
(r6rs i/o simple), 34 (library)
(r6rs lists), 9 (library)
(r6rs mutable-pairs), 56 (library)
(r6rs programs), 55 (library)
(r6rs r5rs), 56 (library)
(r6rs records explicit), 15 (library)
(r6rs records implicit), 17 (library)
(r6rs records inspection), 18 (library)

86 Revised5.92 Scheme

(r6rs records procedural), 12 (library)
(r6rs sorting), 12 (library)
(r6rs syntax-case), 42 (library)
(r6rs unicode), 3 (library)
(r6rs when-unless), 54 (library)
raise, 20 (library)
raise-continuable, 20 (library)
rational-valued?, 41
rational?, 10, 40
rationalize, 44
read, 35 (library)
read-char, 35 (library)
real->double, 42
real->flonum, 42
real->single, 42
real-part, 45
real-valued?, 41
real?, 10, 40
record, 12 (library)
record-accessor, 15 (library)
record-constructor, 14 (library)
record-constructor descriptor, 13 (library)
record-constructor-descriptor, 17 (library)
record-field-mutable?, 19 (library)
record-mutator, 15 (library)
record-predicate, 15 (library)
record-rtd, 19 (library)
record-type descriptor, 12 (library)
record-type-descriptor, 17 (library)
record-type-descriptor?, 13 (library)
record-type-field-names, 19 (library)
record-type-generative?, 19 (library)
record-type-name, 19 (library)
record-type-opaque?, 19 (library)
record-type-parent, 19 (library)
record-type-sealed?, 19 (library)
record-type-uid, 19 (library)
record?, 19 (library)
referentially transparent, 27
region, 18, 33–36, 55
remainder, 57 (library)
remove, 10 (library)
remp, 10 (library)
remq, 10 (library)
remv, 10 (library)
reverse, 48
round, 44
rtd, 12 (library)

scalar value, 49
scheme-report-environment, 58 (library)
&serious, 23 (library)
serious-condition?, 23 (library)
set!, 33
set-car!, 56 (library)

set-cdr!, 56 (library)
set-port-position!, 29 (library)
simple condition, 21 (library)
simplest rational, 44
sin, 44
sint-list->bytevector, 7 (library)
splicing, 36
sqrt, 45
standard-error-port, 33 (library)
standard-input-port, 30 (library)
standard-output-port, 33 (library)
string, 7
string, 50
string->bytevector, 28 (library)
string->list, 51
string->number, 46
string->symbol, 49
string-append, 50
string-ci-hash, 52 (library)
string-ci<=?, 4 (library)
string-ci<?, 4 (library)
string-ci=?, 4 (library)
string-ci>=?, 4 (library)
string-ci>?, 4 (library)
string-copy, 51
string-downcase, 4 (library)
string-fill!, 51
string-foldcase, 4 (library)
string-hash, 52 (library)
string-length, 50
string-normalize-nfc, 4 (library)
string-normalize-nfd, 4 (library)
string-normalize-nfkc, 4 (library)
string-normalize-nfkd, 4 (library)
string-ref, 50
string-set!, 50
string-titlecase, 4 (library)
string-upcase, 4 (library)
string<=?, 50
string<?, 50
string=?, 50
string>=?, 50
string>?, 50
string?, 30, 50
substitution, 43 (library)
substring, 50
surrogate, 49
symbol, 7, 14
symbol->string, 19, 49
symbol-hash, 52 (library)
symbol?, 30, 49
syntactic abstraction, 27
syntactic datum, 9, 11, 16
syntactic keyword, 8, 14, 17, 27
&syntax, 23 (library)

Index 87

syntax, 45 (library)
syntax object, 43, 44 (library)
syntax violation, 22
syntax->datum, 47 (library)
syntax-case, 44 (library)
syntax-rules, 57
syntax-violation, 50 (library)
syntax-violation?, 23 (library)

#t, 14, 46
tail call, 59
tan, 44
textual ports, 25 (library)
top-level program, 9, 17, 28
transcoded-port, 28 (library)
transcoder, 26 (library)
transcoder-codec, 28 (library)
transcoder-eol-style, 28 (library)
transcoder-error-handling-mode, 28 (library)
transformation procedure, 44 (library)
transformer, 27
true, 19, 32, 33
truncate, 44
type, 30

u8-list->bytevector, 6 (library)
uint-list->bytevector, 7 (library)
unbound, 18, 26
&undefined, 23 (library)
undefined-violation?, 23 (library)
Unicode, 49
universe, 52 (library)
unless, 54, 55 (library)
unquote, 56
unquote-splicing, 56
unspecified, 39
unspecified behavior, 21
unspecified value, 30, 39
unspecified?, 30, 39
utf-16-codec, 27 (library)
utf-32-codec, 27 (library)
utf-8-codec, 27 (library)

valid indexes, 50, 51
values, 53
variable, 7, 14, 17, 26
variable transformer, 44 (library)
vector, 7
vector, 51
vector->list, 51
vector-fill!, 51
vector-for-each, 52
vector-length, 51
vector-map, 51
vector-ref, 51
vector-set!, 51

vector-sort, 12 (library)
vector?, 30, 51
&violation, 23 (library)
violation?, 23 (library)

&warning, 23 (library)
warning?, 23 (library)
when, 54, 55 (library)
Whitespace, 13
&who, 24 (library)
who-condition?, 24 (library)
with-exception-handler, 20 (library)
with-input-from-file, 35 (library)
with-output-to-file, 35 (library)
with-syntax, 49 (library)
wrap, 43 (library)
wrapped syntax object, 43 (library)
write, 35 (library)
write-char, 35 (library)

#x, 13, 15

zero?, 42

