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SUMMARY

The report gives a defining description of the programming language Scheme. Scheme is a statically scoped and properly
tail-recursive dialect of the Lisp programming language invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was
designed to have an exceptionally clear and simple semantics and few different ways to form expressions. A wide variety
of programming paradigms, including imperative, functional, and message passing styles, find convenient expression in
Scheme.
The introduction offers a brief history of the language and of the report. It also gives a short introduction to the basic
concepts of the language.
Chapter 2 explains Scheme’s number types. Chapter 3 defines the read syntax of Scheme programs. Chapter 4 presents
the fundamental semantic ideas of the language. Chapter 5 defines notational conventions used in the rest of the report.
Chapters 6 and 7 describe libraries and scripts, the basic organizational units of Scheme programs. Chapter 8 explains
the expansion process for Scheme code.
Chapter 9 explains the Scheme base library which contains the fundamental forms useful to programmers.
The next set of chapters describe libraries that provide specific functionality: Unicode semantics for characters and
strings, binary data, list utility procedures, a record system, exceptions and conditions, I/O, specialized libraries for
dealing with numbers and arithmetic, the syntax-case facility for writing arbitrary macros, hash tables, enumerations,
and various miscellaneous libraries.
Chapter 21 describes the composite library containing most of the forms described in this report. Chapter 22 describes the
eval facility for evaluating Scheme expressions represented as data. Chapter 23 describes the operations for mutating
pairs. Chapter 24 describes a library with some procedures from the previous version of this report for backwards
compatibility.
Appendix A provides a formal semantics for a core of Scheme. Appendix B contains definitions for some of the derived
forms described in the report.
The report concludes with a list of references and an alphabetic index.

*** DRAFT***
This is a preliminary draft. It is intended to reflect the decisions taken by the editors’ comittee, but contains many
mistakes, ambiguities and inconsistencies.
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail-
recursive procedure calls are essentially goto’s that pass
arguments. Scheme was the first widely used program-
ming language to embrace first class escape procedures,
from which all previously known sequential control struc-
tures can be synthesized. A subsequent version of Scheme
introduced the concept of exact and inexact numbers, an
extension of Common Lisp’s generic arithmetic. More re-
cently, Scheme became the first programming language to
support hygienic macros, which permit the syntax of a
block-structured language to be extended in a consistent
and reliable manner.

Numerical computation was long neglected by the Lisp
community. Until Common Lisp there was no carefully
thought out strategy for organizing numerical computa-
tion, and with the exception of the MacLisp system [39]
little effort was made to execute numerical code efficiently.
The Scheme reports recognized the excellent work of the
Common Lisp committee and accepted many of their rec-
ommendations, while simplifying and generalizing in some
ways consistent with the purposes of Scheme.

Background

The first description of Scheme was written by Gerald Jay
Sussman and Guy Lewis Steele Jr. in 1975 [47]. A revised
report by Steele and Sussman [44] appeared in 1978 and
described the evolution of the language as its MIT imple-
mentation was upgraded to support an innovative com-
piler [45]. Three distinct projects began in 1981 and 1982
to use variants of Scheme for courses at MIT, Yale, and
Indiana University [40, 36, 19]. An introductory computer
science textbook using Scheme was published in 1984 [1].
A number of textbooks describing und using Scheme have
been published since [15].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report [7], edited by Will Clinger, was published at
MIT and Indiana University in the summer of 1985. Fur-
ther revision took place in the spring of 1986 [42] (edited
by Jonathan Rees and Will Clinger), and in the spring of
1988 [9] (also edited by Will Clinger and Jonathan Rees).
Another revision published in 1998, edited by Richard
Kelsey, Will Clinger and Jonathan Rees, reflected further
revisions agreed upon in a meeting at Xerox PARC in June
1992 [28].

Attendees of the Scheme Workshop in Pittsburgh in Octo-
ber 2002 formed a Strategy Committee to discuss a process
for producing new revisions of the report. The strategy
committee drafted a charter for Scheme standardization.
This charter, together with a process for selecting editors’
committees for producing new revisions for the report, was
confirmed by the attendees of the Scheme Workshop in
Boston in November 2003. Subsequently, a Steering Com-
mittee according to the charter was selected, consisting of
Alan Bawden, Guy L. Steele Jr., and Mitch Wand. An
editors’ committee charged with producing this report was
also formed at the end of 2003, consisting of Will Clinger,
R. Kent Dybvig, Marc Feeley, Matthew Flatt, Richard
Kelsey, Manuel Serrano, and Mike Sperber, with Marc Fee-
ley acting as Editor-in-Chief. Richard Kelsey resigned from
the committee in April 2005, and was replaced by Anton
van Straaten. Marc Feeley and Manuel Serrano resigned
from the committee in January 2006. Subsequently, the
charter was revised to reduce the size of the editors’ com-
mittee to five and to replace the office of Editor-in-Chief by
a Chair and a Project Editor [48]. R. Kent Dybvig served
as Chair, and Mike Sperber served as Project Editor. Parts
of the report were posted as Scheme Requests for Imple-
mentation (SRFIs) and discussed by the community before
being revised and finalized for the report [22, 12, 13, 21, 17].
Jacob Matthews and Robby Findler wrote the operational
semantics for the language core.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

This chapter gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of the following
chapters. For reference purposes, appendix A provides a
formal semantics for a core subset of Scheme.

Following Algol, Scheme is a statically scoped program-
ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types [53]. Types
are associated with values (also called objects) rather than
with variables. (Some authors refer to languages with
latent types as weakly typed or dynamically typed lan-
guages.) Other languages with latent types are Python,
Ruby, Smalltalk, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly
typed or statically typed languages) include Algol 60, C,
C#, Java, Haskell and ML.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent in-
clude C#, Haskell, ML, Python, Ruby, Smalltalk and other
Lisp dialects.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 4.7.

Scheme was one of the first languages to support proce-
dures as objects in their own right. Procedures can be cre-
ated dynamically, stored in data structures, returned as re-
sults of procedures, and so on. Other languages with these
properties include Common Lisp, Haskell, ML, Smalltalk,
and Ruby.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 9.18.

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, whether

the procedure needs the result of the evaluation or not.
C, C#, Common Lisp, Python, Ruby, and Smalltalk are
other languages that always pass arguments by value. This
is distinct from the lazy-evaluation semantics of Haskell, or
the call-by-name semantics of Algol 60, where an argument
expression is not evaluated unless its value is needed by
the procedure. Note that call-by-value refers to a different
distinction than the distinction between by-value and by-
reference passing in Pascal. In Scheme, all data structures
are passed by-reference.

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Scheme distinguishes be-
tween exact arithmetic, which corresponds to the mathe-
matical ideal, and inexact arithmetic on approximations.
Exact arithmetic includes arithmetic on integers, rationals
and complex numbers.

The following sections give a brief overview of the most
fundamental elements of the language. The purpose of
this overview is to explain enough of the basic concepts of
the language to facilitate understanding of the subsequent
chapters of the report, which are organized as a reference
manual. Consequently, this overview is not a complete
introduction of the language, nor is it precise in all respects.

1.1. Basic types

Scheme programs manipulate values, which are also re-
ferred to as objects. Scheme values are organized into sets
of values called types. This gives an overview of the funda-
mentally important types of the Scheme language. More
types are described in later chapters.

Note: As Scheme is latently typed, the use of the term type

in this report differs from the use of the term in the context of

other languages, particularly those with manifest typing.

Boolean values A boolean value denotes a truth value,
and can either be true or false. In Scheme, the value for
“false” is written #f. The value “true” is written #t. In
most places where a truth value is expected, however, any
value different from #f counts as true.

Numbers Scheme supports a rich variety of numerical
data types, including integers of arbitrary precision, ra-
tional numbers, complex numbers and inexact numbers of
various kinds. Chapter 2 gives an overview of the structure
of Scheme’s numerical tower.
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Characters Scheme characters mostly correspond to
textual characters. More precisely, they are isomorphic
to the scalar values of the Unicode standard.

Strings Strings are finite sequences of characters with
fixed length and thus represent arbitrary Unicode texts.

Symbols A symbol is an object representing a string
that cannot be modified. This string is called the symbol’s
name. Unlike strings, two symbols whose names are spelled
the same way are indistinguishable. Symbols are useful for
many applications; for instance, they may be used the way
enumerated values are used in other languages.

Pairs and lists A pair is a data structure with two com-
ponents. The most common use of pairs is to represent
(singly linked) lists, where the first component (the “car”)
represents the first element of the list, and the second com-
ponent (the “cdr”) the rest of the list. Scheme also has a
distinguished empty list, which is the last cdr in a chain of
pairs representing a list.

Vectors Vectors, like lists, are linear data structures rep-
resenting finite sequences of arbitrary objects. Whereas the
elements of a list are accessed sequentially through the pair
chain representing it, the elements of a vector are addressed
by an integer index. Thus, vectors are more appropriate
than lists for random access to elements.

Procedures As mentioned in the introduction, proce-
dures are values in Scheme.

1.2. Expressions

The most important elements of a Scheme program are
expressions. Expressions can be evaluated, producing a
value. (Actually, any number of values—see section 4.5.)
The most fundamental expressions are literal expressions:

#t =⇒ #t

23 =⇒ 23

This notation means that the expression #t evaluates to
#t, that is, the value for “true,” and that the expression
23 evaluates to the number 23.

Compound expressions are formed by placing parentheses
around their subexpressions. The first subexpression is an
operator and identifies an operation; the remaining subex-
pressions are operands:

(+ 23 42) =⇒ 65

(+ 14 (* 23 42)) =⇒ 980

In the first of these examples, +, the operator, is the name
of the built-in operation for addition, and 23 and 42 are the
operands. The expression (+ 23 42) reads as “the sum of
23 and 42.” Compound expressions can be nested—the
second example reads as “the sum of 14 and the product
of 23 and 42.”

As these examples indicate, compound expressions in
Scheme are always written using the same prefix nota-
tion. As a consequence, the parentheses are needed to
indicate structure, and “superfluous” parentheses, which
are permissible in mathematics and many programming
languages, are not allowed in Scheme.

As in many other languages, whitespace and newlines are
not significant when they separate subexpressions of an
expression, and can be used to indicate structure.

1.3. Variables and binding

Scheme allows identifiers to denote values. These identi-
fiers are called variables. (More precisely, variables denote
locations. This distinction is not important, however, for
a large proportion of Scheme code.)

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

In this case, the operator of the expression, let, is a bind-
ing construct. The parenthesized structure following the
let lists variables alongside expressions: the variable x
alongside 23, and the variable y alongside 42. The let
expression binds x to 23, and y to 42. These bindings are
available in the body of the let expression, (+ x y), and
only there.

1.4. Definitions

The variables bound by a let expression are local, because
their bindings are visible only in the let’s body. Scheme
also allows creating top-level bindings for identifiers as fol-
lows:

(define x 23)

(define y 42)

(+ x y) =⇒ 65

(These are actually “top-level” in the body of a library or
script; see section 1.10 below.)

The first two parenthesized structures are definitions; they
create top-level bindings, binding x to 23 and y to 42. Defi-
nitions are not expressions, and cannot appear in all places
where an expression can occur. Moreover, a definition has
no value.
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Bindings follow the lexical structure of the program: When
several bindings with the same name exist, a variable refers
to the binding that is closest to it, starting with its occur-
rence in the program and going from inside to outside,
going all the way to a top-level binding only if no local
binding can be found along the way:

(define x 23)

(define y 42)

(let ((y 43))

(+ x y)) =⇒ 66

(let ((y 43))

(let ((y 44))

(+ x y))) =⇒ 67

1.5. Procedures

Definitions can also be used to define procedures:

(define (f x)

(+ x 42))

(f 23) =⇒ 65

A procedure is, slightly simplified, an abstraction over an
expression. In the example, the first definition defines a
procedure called f. (Note the parentheses around f x,
which indicate that this is a procedure definition.) The
expression (f 23) is a procedure call, meaning, roughly,
“evaluate (+ x 42) (the body of the procedure) with x
bound to 23.”

As procedures are regular values, they can be passed to
other procedures:

(define (f x)

(+ x 42))

(define (g p x)

(p x))

(g f 23) =⇒ 65

In this example, the body of g is evaluated with p bound to
f and x bound to 23, which is equivalent to (f 23), which
evaluates to 42.

In fact, many predefined operations of Scheme are bind-
ings for procedures. +, for example, which receives special
syntactic treatment in many other languages, is just a reg-
ular identifier in Scheme, bound to a procedure that adds
numbers. The same holds for * and many others:

(define (h op x y)

(op x y))

(h + 23 42) =⇒ 65

(h * 23 42) =⇒ 966

Procedure definitions are not the only way to create pro-
cedures. A lambda expression creates a new procedure as
a value, with no need to specify a name:

((lambda (x) (+ x 42)) 23) =⇒ 65

The entire expression in this example is a procedure call;
its operator is (lambda (x) (+ x 42)), which evaluates
to a procedure that takes a single number and add it to
42.

1.6. Procedure calls and syntactic key-
words

Whereas (+ 23 42), (f 23), and ((lambda (x) (+ x
42)) 23) are all examples of procedure calls, lambda and
let expressions are not. This is because let, even though
it is an identifier, is not a variable, but is instead a syntac-
tic keyword . An expression that has a syntactic keyword as
its operator obeys special rules determined by the keyword.
The define identifier in a definition is also a syntactic key-
word. Hence, definitions are also not procedure calls.

In the case of lambda, these rules specify that the first
subform is a list of parameters, and the second subform is
the body of the procedure. In let expressions, the first
subform is a list of binding specifications, and the second
is a body of expressions.

Procedure calls can be distinguished from these “special
forms” by looking for a syntactic keyword in the first posi-
tion of an expression: if it is not a syntactic keyword, the
expression is a procedure call. The set of syntactic key-
words of Scheme is fairly small, which usually makes this
task fairly simple. It is possible, however, to create new
bindings for syntactic keywords; see below.

1.7. Assignment

Scheme variables bound by definitions or let or lambda
forms are not actually bound directly to the values specified
in the respective bindings, but to locations containing these
values. The contents of these locations can subsequently
be modified destructively via assignment :

(let ((x 23))

(set! x 42)

x) =⇒ 42

In this case, the body of the let expression consists of two
expressions which are evaluated sequentially, with the value
of the final expression becoming the value of the entire let
expression. The expression (set! x 42) is an assignment,
saying “replace the value in the location denoted by x with
42.” Thus, the previous value of 23 is replaced by 42.
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1.8. Derived forms and macros

Many of the special forms specified in this report can
be translated into more basic special forms. For exam-
ple, let expressions can be translated into procedure calls
and lambda expressions. The following two expressions are
equivalent:

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

((lambda (x y) (+ x y)) 23 42)

=⇒ 65

Special forms like let expressions are called derived forms
because their semantics can be derived from that of other
kinds of forms by a syntactic transformation. Procedure
definitions are also derived forms. The following two defi-
nitions are equivalent:

(define (f x)

(+ x 42))

(define f

(lambda (x)

(+ x 42)))

In Scheme, it is possible for a program to create its own
derived forms by binding syntactic keywords to macros:

(define-syntax def

(syntax-rules ()

((def f (p ...) body)

(define (f p ...)

body))))

(def f (x)

(+ x 32))

The define-syntax construct specifies that a parenthe-
sized structure matching the pattern (def f (p ...)
body), where f, p, and body are pattern variables, is trans-
lated to (define (f p ...) body). Thus, the def form
appearing in the example gets translated to:

(define (f x)

(+ x 42))

The ability to create new syntactic keywords makes Scheme
extremely flexible and expressive, enabling the formula-
tion of many features built into other languages as derived
forms.

1.9. Syntactic datums and datum values

A subset of the Scheme values called datum values have
a special status in the language. These include booleans,
numbers, characters, and strings as well as lists and vec-
tors whose elements are datums. Each datum value may

be represented in textual form as a syntactic datum, which
can be written out and read back in without loss of infor-
mation. Several syntactic datums can represent the same
datum value, but the datum value corresponding to a syn-
tactic datum is uniquely determined. Moreover, each da-
tum value can be trivially translated to a literal expression
in a program by prepending a ’ to a corresponding syntac-
tic datum:

’23 =⇒ 23

’#t =⇒ #t

’foo =⇒ foo

’(1 2 3) =⇒ (1 2 3)

’#(1 2 3) =⇒ #(1 2 3)

The ’ is, of course, not needed for number or boolean lit-
erals. The identifier foo is a syntactic datum that can
represent a symbol with name “foo,” and ’foo is a literal
expression with that symbol as its value. (1 2 3) is a syn-
tactic datum that can represent a list with elements 1, 2,
and 3, and ’(1 2 3) is a literal expression with this list
as its value. Likewise, #(1 2 3) is a syntactic datum that
can represent a vector with elements 1, 2 and 3, and ’#(1
2 3) is the corresponding literal.

The syntactic datums form a superset of the Scheme forms.
Thus, datums can be used to represent Scheme programs
as data objects. In particular, symbols can be used to
represent identifiers.

’(+ 23 42) =⇒ (+ 23 42)

’(define (f x) (+ x 42))

=⇒ (define (f x) (+ x 42))

This facilitates writing programs that operate on Scheme
source code, in particular intpreters and program trans-
formers.

1.10. Libraries

Scheme code is organized in components called libraries.
Each library contains declarations, definitions and expres-
sions. It can import definitions from other libraries, and
export definitions to other libraries:

(library (hello)

(export)

(import (r6rs base)

(r6rs i/o simple))

(display "Hello World")

(newline))

1.11. Scripts

A Scheme program is invoked via a script . Like a library,
a script contains declarations, definitions and expressions,
but specifies an entry point for execution. Thus, a script
defines, via the transitive closure of the libraries it imports,
a Scheme program.
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#! /usr/bin/env scheme-script

#!r6rs

(import (r6rs base)

(r6rs i/o ports))

(put-bytes (standard-output-port)

(call-with-port

(open-file-input-port

(cadr (command-line-arguments)))

get-bytes-all))

0

2. Numbers

This chapter describes Scheme’s representations for num-
bers. It is important to distinguish between the mathemat-
ical numbers, the Scheme numbers that attempt to model
them, the machine representations used to implement the
Scheme numbers, and notations used to write numbers.
This report uses the types number, complex, real, ratio-
nal, and integer to refer to both mathematical numbers
and Scheme numbers. The fixnum and flonum types refer
to certain subtypes of the Scheme numbers, as explained
below.

2.1. Numerical types

Mathematically, numbers may be arranged into a tower of
subtypes in which each level is a subset of the level above
it:

number
complex
real
rational
integer

For example, 5 is an integer. Therefore 5 is also a rational,
a real, and a complex. The same is true of the Scheme
numbers that model 5. For Scheme numbers, these types
are defined by the predicates number?, complex?, real?,
rational?, and integer?.

There is no simple relationship between a number’s type
and its representation inside a computer. Although most
implementations of Scheme offer at least three different
representations of 5, these different representations denote
the same integer.

Scheme’s numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use many dif-
ferent representations for numbers, this should not be ap-
parent to a casual programmer writing simple programs.

It is necessary, however, to distinguish between numbers
that are represented exactly and those that may not be.
For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic

algebra system. On the other hand, the results of measure-
ments are inherently inexact, and irrational numbers may
be approximated by rational and therefore inexact approx-
imations. In order to catch uses of inexact numbers where
exact numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal
to the dimension of type.

A fixnum is an exact integer whose value lies within a cer-
tain implementation-dependent subrange of the exact inte-
gers (section 16.3). Likewise, every implementation is re-
quired to designate a subset of its inexact reals as flonums,
and to convert certain external representations into flon-
ums. Note that this does not imply that an implementation
is required to use floating point representations.

2.2. Exactness

Scheme numbers are either exact or inexact. A number
is exact if it is written as an exact constant or was de-
rived from exact numbers using only exact operations. A
number is inexact if it is written as an inexact constant
or was derived from inexact numbers. Thus inexactness is
contagious.

Exact arithmetic is reliable in the following sense: If ex-
act numbers are passed to any of the arithmetic proce-
dures described in section 9.10, and an exact number is re-
turned, then the result is mathematically correct. This is
generally not true of computations involving inexact num-
bers because approximate methods such as floating point
arithmetic may be used, but it is the duty of each imple-
mentation to make the result as close as practical to the
mathematically ideal result.

2.3. Implementation restrictions

Implementations of Scheme are required to implement the
whole tower of subtypes given in section 2.1.

Implementations are required to support exact integers and
exact rationals of practically unlimited size and precision,
and to implement certain procedures (listed in 9.10.1) so
they always return exact results when given exact argu-
ments.

Implementations may support only a limited range of in-
exact numbers of any type, subject to the requirements of
this section. For example, an implementation may limit
the range of inexact reals (and therefore the range of in-
exact integers and rationals) to the dynamic range of the
flonum format. Furthermore the gaps between the repre-
sentable inexact integers and rationals are likely to be very
large in such an implementation as the limits of this range
are approached.
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An implementation may use floating point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that the
IEEE floating point standards be followed by implemen-
tations that use floating point representations, and that
implementations using other representations should match
or exceed the precision achievable using these floating point
standards [26].

In particular, implementations that use floating point rep-
resentations must follow these rules: A floating point result
must be represented with at least as much precision as is
used to express any of the inexact arguments to that op-
eration. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact ar-
guments, to produce exact answers whenever possible (for
example the square root of an exact 4 ought to be an exact
2). If, however, an exact number is operated upon so as to
produce an inexact result (as by sqrt), and if the result is
represented in floating point, then the most precise float-
ing point format available must be used; but if the result
is represented in some other way then the representation
must have at least as much precision as the most precise
floating point format available.

It is the programmer’s responsibility to avoid using inex-
act numbers with magnitude or significand too large to be
represented in the implementation.

2.4. Infinities and NaNs

Positive infinity is regarded as a real (but not rational)
number, whose value is indeterminate but greater than all
rational numbers. Negative infinity is regarded as a real
(but not rational) number, whose value is indeterminate
but less than all rational numbers.

A NaN is regarded as a real (but not rational) number
whose value is so indeterminate that it might represent
any real number, including positive or negative infinity,
and might even be greater than positive infinity or less
than negative infinity.

3. Lexical syntax and read syntax

The syntax of Scheme programs is organized in three levels:

1. the lexical syntax that describes how a program text
is split into a sequence of lexemes,

2. the read syntax, formulated in terms of the lexical syn-
tax, that structures the lexeme sequence as a sequence
of syntactic datums, where a syntactic datum is a re-
cursively structured entity,

3. the program syntax formulated in terms of the read
syntax, imposing further structure and assigning
meaning to syntactic datums.

Syntactic datums (also called external representations)
double as a notation for data, and Scheme’s (r6rs i/o
ports) library (section 15.3) provides the get-datum and
put-datum procedures for reading and writing syntactic
datums, converting between their textual representation
and the corresponding values. A syntactic datum can be
used in a program to obtain the corresponding value using
quote (see section 9.5.1).

Moreover, valid Scheme expressions form a subset of the
syntactic datums. Consequently, Scheme’s syntax has the
property that any sequence of characters that is an expres-
sion is also a syntactic datum representing some object.
This can lead to confusion, since it may not be obvious
out of context whether a given sequence of characters is
intended to denote data or program. It is also a source
of power, since it facilitates writing programs such as in-
terpreters and compilers that treat programs as data (or
vice versa). A syntactic datum occurring in program text
is often called a form.

Note that several syntactic datums may represent the
same object, a so-called datum value. For example,
both“#e28.000” and “#x1c” are syntactic datums repre-
senting the exact integer 28; The syntactic datums “(8
13)”, “( 08 13 )”, “(8 . (13 . ()))” (and more) all
represent a list containing the integers 8 and 13. Syntactic
datums that denote equal objects are always equivalent as
forms of a program.

Because of the close correspondence between syntactic da-
tums and datum values, this report sometimes uses the
term datum to denote either a syntactic datum or a da-
tum value when the exact meaning is apparent from the
context.

An implementation is not permitted to extend the lexical
or read syntax in any way, with one exception: it need
not treat the syntax #!〈identifier〉, for any 〈identifier〉 (see
section 3.2.3) that is not r6rs, as a syntax violation, and it
may use specific #!-prefixed identifiers as flags indicating
that subsequent input contains extensions to the standard
lexical syntax. (The comment syntax #!r6rs may be used
to signify that the input which follows is written purely in
the language described by this report; see section 3.2.2.)

This chapter overviews and provides formal accounts of the
lexical syntax and the read syntax.

3.1. Notation

The formal syntax for Scheme is written in an extended
BNF. Non-terminals are written using angle brackets; case
is insignificant for non-terminal names.

All spaces in the grammar are for legibility. 〈Empty〉
stands for the empty string.
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The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉; and 〈thing〉+ means at least one 〈thing〉.

Some non-terminal names refer to the Unicode scalar val-
ues of the same name: 〈character tabulation〉 (U+0009),
〈linefeed〉 (U+000A), 〈line tabulation〉 (U+000B),
〈form feed〉 (U+000C), 〈carriage return〉 (U+000D),
and 〈space〉 (U+0020).

3.2. Lexical syntax

The lexical syntax describes how a character sequence is
split into a sequence of lexemes, omitting non-significant
portions such as comments and whitespace. The charac-
ter sequence is assumed to be text according to the Uni-
code standard [51]. Some of the lexemes, such as numbers,
identifiers, strings etc. of the lexical syntax are syntactic
datums in the read syntax, and thus represent data. Be-
sides the formal account of the syntax, this section also
describes what datum values are denoted by these syntac-
tic datums.

Note that the lexical syntax, in the description of com-
ments, contains a forward reference to 〈datum〉, which is
described as part of the read syntax. However, being com-
ments, these 〈datum〉s do not play a significant role in the
syntax.

Case is significant except in boolean datums, number da-
tums, and hexadecimal numbers denoting scalar values.
For example, #x1A and #X1a are equivalent. The identi-
fier Foo is, however, distinct from the identifier FOO.

3.2.1. Formal account

〈Interlexeme space〉may occur on either side of any lexeme,
but not within a lexeme.

Lexemes that require implicit termination (identifiers,
numbers, characters, booleans, and dot) are terminated
by any 〈delimiter〉 or by the end of the input, but not nec-
essarily by anything else.

The following two characters are reserved for future exten-
sions to the language: { }

〈lexeme〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉
| ( | ) | [ | ] | #( | ’ | ` | , | ,@ | .

〈delimiter〉 −→ 〈whitespace〉 | ( | ) | [ | ] | " | ;
〈whitespace〉 −→ 〈character tabulation〉 | 〈linefeed〉

| 〈line tabulation〉 | 〈form feed〉 〈carriage return〉
| 〈any character whose category is Zs, Zl, or Zp〉

〈intra-line whitespace〉 −→ 〈any 〈whitespace〉
that is not 〈linefeed〉

〈comment〉 −→ ; 〈all subsequent characters up to a

linefeed〉
| 〈nested comment〉
| #; 〈datum〉
| #!r6rs

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉
〈interlexeme space〉 −→ 〈atmosphere〉*

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈peculiar identifier〉

〈initial〉 −→ 〈constituent〉 | 〈special initial〉
| 〈symbol escape〉

〈letter〉 −→ a | b | c | ... | z
| A | B | C | ... | Z

〈constituent〉 −→ 〈letter〉
| 〈any character whose scalar value is greater than

127, and whose category is Lu, Lt, Lm, Lo, Mn, Mc,
Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co〉

〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =
| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈special subsequent〉
| 〈inline hex escape〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉

| a | A | b | B | c | C | d | D | e | E | f | F
〈special subsequent〉 −→ + | - | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+

with at most 8 digits
〈peculiar identifier〉 −→ + | - | ... | -> 〈subsequent〉*
〈boolean〉 −→ #t | #T | #f | #F
〈character〉 −→ #\〈any character〉

| #\〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ nul | alarm | backspace | tab
| linefeed | vtab | page | return | esc
| space | delete

〈string〉 −→ " 〈string element〉* "
〈string element〉 −→ 〈any character other than " or \〉

| \a | \b | \t | \n | \v | \f | \r
| \" | \\
| \〈linefeed〉 | \〈space〉
| 〈inline hex escape〉

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉
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The following rules for 〈num R〉, 〈complex R〉, 〈real R〉,
〈ureal R〉, 〈uinteger R〉, and 〈prefix R〉 should be repli-
cated for R = 2, 8, 10, and 16. There are no rules for
〈decimal 2〉, 〈decimal 8〉, and 〈decimal 16〉, which means
that numbers containing decimal points or exponents must
be in decimal radix.

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i
| 〈real R〉 + i | 〈real R〉 - i
| + 〈ureal R〉 i | - 〈ureal R〉 i | + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
〈ureal R〉 −→ 〈uinteger R〉

| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉 〈mantissa width〉
| inf.0 | nan.0

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ #* 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* #* 〈suffix〉
| 〈digit 10〉+ #+ . #* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+ #*
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | E | s | S | f | F
| d | D | l | L

〈mantissa width〉 −→ 〈empty〉
| | 〈digit 10〉+

〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉

| #i | #I | #e | #E
〈radix 2〉 −→ #b | #B
〈radix 8〉 −→ #o | #O
〈radix 10〉 −→ 〈empty〉 | #d | #D
〈radix 16〉 −→ #x | #X
〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈hex digit〉

3.2.2. Whitespace and comments

Whitespace characters are spaces, linefeeds, carriage re-
turns, character tabulations, form feeds, line tabulations,
and any other character whose category is Zs, Zl, or Zp.
Whitespace is used for improved readability and as nec-
essary to separate lexemes from each other. Whitespace
may occur between any two lexemes, but not within a lex-
eme. Whitespace may also occur inside a string, where it
is significant.

The lexical syntax includes several comment forms. In all
cases, comments are invisible to Scheme, except that they
act as delimiters, so a comment cannot appear in the mid-
dle of an identifier or number.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears (i.e., it is terminated by a linefeed char-
acter).

Another way to indicate a comment is to prefix a 〈datum〉
(cf. Section 3.3.1) with #;, possibly with whitespace before
the 〈datum〉. The comment consists of the comment prefix
#; and the 〈datum〉 together. (This notation is useful for
“commenting out” sections of code.)

Block comments may be indicated with properly nested #|
and |# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

;; base case

(if (= n 0)

#;(= n 1)

1 ; identity of *

(* n (fact (- n 1))))))

The lexeme #!r6rs is also a comment. When it occurs
in program text, it signifies that program text to be writ-
ten purely in the language described by this report (see
section 6.1).

3.2.3. Identifiers

Most identifiers allowed by other programming languages
are also acceptable to Scheme. In particular, a sequence of
letters, digits, and “extended alphabetic characters” that
begins with a character that cannot begin a number is an
identifier. In addition, +, -, and ... are identifiers. Here
are some examples of identifiers:

lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within iden-
tifiers as if they were letters. The following are extended
alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Moreover, all characters whose scalar values are greater
than 127 and whose Unicode category is Lu, Lt, Lm, Lo,
Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co
can be used within identifiers. Moreover, any character can
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appear as the constituent of an identifier when denoted via
a hexadecimal escape sequence. For example, the identifier
H\x65;llo is the same as the identifier Hello, and the
identifier \x3BB; is the same as the identifier λ.

Any identifier may be used as a variable or as a syntactic
keyword (see sections 4.2 and 6.3.2) in a Scheme program.

Moreover, when viewed as a datum value, an identifier de-
notes a symbol (see section 9.13).

3.2.4. Booleans

The standard boolean objects for true and false are written
as #t and #f. The character after a boolean literal must
be a delimiter character, such as a space or parenthesis.

3.2.5. Characters

Characters are written using the notation #\〈character〉
or #\〈character name〉 or #\x〈digit 16〉+, where the last
specifies the scalar value of a character with a hexadecimal
number of no more than eight digits.

For example:

#\a =⇒ lower case letter a
#\A =⇒ upper case letter A
#\( =⇒ left parenthesis
#\ =⇒ space character
#\nul =⇒ U+0000
#\alarm =⇒ U+0007
#\backspace =⇒ U+0008
#\tab =⇒ U+0009
#\linefeed =⇒ U+000A
#\vtab =⇒ U+000B
#\page =⇒ U+000C
#\return =⇒ U+000D
#\esc =⇒ U+001B
#\space =⇒ U+0020

; preferred way to write a space
#\delete =⇒ U+007F

#\xFF =⇒ U+00FF
#\x03BB =⇒ U+03BB
#\x00006587 =⇒ U+6587
#\λ =⇒ U+03BB

#\x0001z =⇒ &lexical exception
#\λx =⇒ &lexical exception
#\alarmx =⇒ &lexical exception
#\alarm x =⇒ U+0007

; followed by x

#\Alarm =⇒ &lexical exception
#\alert =⇒ &lexical exception
#\xA =⇒ U+000A
#\xFF =⇒ U+00FF
#\xff =⇒ U+00FF
#\x ff =⇒ U+0078

; followed by another datum, ff

#\x(ff) =⇒ U+0078
; followed by another datum,
; a parenthesized ff

#\(x) =⇒ &lexical exception
#\(x =⇒ &lexical exception
#\((x) =⇒ U+0028

; followed by another datum,
; parenthesized x

#\x00110000 =⇒ &lexical exception
; out of range

#\x000000001 =⇒ &lexical exception
; too many digits

#\xD800 =⇒ &lexical exception
; in excluded range

(The notation &lexical exception means that the line in
question is a lexical syntax violation.)

Case is significant in #\〈character〉, and in in #\〈character
name〉, but not in #\x〈digit 16〉+. The character after a
〈character〉 must be a delimiter character such as a space
or parenthesis. This rule resolves various ambiguous cases,
for example, the sequence of characters “#\space” could be
taken to be either a representation of the space character
or a representation of the character “#\s” followed by a
representation of the symbol “pace.”

3.2.6. Strings

String are written as sequences of characters enclosed
within doublequotes ("). Within a string literal, various
escape sequences denote characters other than themselves.
Escape sequences always start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008

• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \v : line tabulation, U+000B

• \f : formfeed, U+000C

• \r : return, U+000D

• \" : doublequote, U+0022

• \\ : backslash, U+005C

• \〈linefeed〉〈intraline whitespace〉 : nothing

• \〈space〉 : space, U+0020 (useful for terminating
the previous escape sequence before continuing with
whitespace)
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• \x〈digit 16〉+; : (note the terminating semi-colon)
where no more than eight 〈digit 16〉s are provided,
and the sequence of 〈digit 16〉s forms a hexadecimal
number between 0 and #x10FFFF excluding the range
[#xD800,#xDFFF].

These escape sequences are case-sensitive, except that
〈digit 16〉 can be an uppercase or lowercase hexadecimal
digit.

Any other character in a string after a backslash is an er-
ror. Any character outside of an escape sequence and not
a doublequote stands for itself in the string literal. For
example the single-character string "λ" (double quote, a
lower case lambda, double quote) denotes the same string
literal as "\x03bb;".

Examples:

"abc" =⇒ U+0061, U+0062, U+0063
"\x41;bc" =⇒ "Abc" ; U+0041, U+0062, U+0063
"\x41; bc" =⇒ "A bc"

; U+0041, U+0020, U+0062, U+0063
"\x41bc;" =⇒ U+41BC
"\x41" =⇒ &lexical exception
"\x;" =⇒ &lexical exception
"\x41bx;" =⇒ &lexical exception
"\x00000041;" =⇒ "A" ; U+0041
"\x0010FFFF;" =⇒ U+10FFFF
"\x00110000;" =⇒ &lexical exception

; out of range
"\x000000001;"=⇒ &lexical exception

; too many digits
"\xD800;" =⇒ &lexical exception

; in excluded range

3.2.7. Numbers

The syntax of written representations for numbers is de-
scribed formally by the 〈number〉 rule in the formal gram-
mar. Note that case is not significant in numerical con-
stants.

A number may be written in binary, octal, decimal, or hex-
adecimal by the use of a radix prefix. The radix prefixes
are #b (binary), #o (octal), #d (decimal), and #x (hexadec-
imal). With no radix prefix, a number is assumed to be
expressed in decimal.

A numerical constant may be specified to be either exact or
inexact by a prefix. The prefixes are #e for exact, and #i
for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation
of a number has no exactness prefix, the constant may be
either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a “#” character in the place of a
digit; otherwise it is exact.

In systems with inexact numbers of varying precisions, it
may be useful to specify the precision of a constant. For
this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the
inexact representation. The letters s, f, d, and l specify
the use of short , single, double, and long precision, respec-
tively. (When fewer than four internal inexact represen-
tations exist, the four size specifications are mapped onto
those available. For example, an implementation with two
internal representations may map short and single together
and long and double together.) In addition, the exponent
marker e specifies the default precision for the implemen-
tation. The default precision has at least as much precision
as double, but implementations may wish to allow this de-
fault to be set by the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

If x is an external representation of an inexact real number
that contains no vertical bar, and p is a sequence of 1 or
more decimal digits, then x|p is an external representation
that denotes the best binary floating point approximation
to x using a p-bit significand. For example, 1.1|53 is an
external representation for the best approximation to 1.1
in IEEE double precision.

If x is an external representation of an inexact real number
that contains no vertical bar, then x by itself should be
regarded as equivalent to x|53.

Implementations that use binary floating point representa-
tions of real numbers should represent x|p using a p-bit
significand if practical, or by a greater precision if a p-
bit significand is not practical, or by the largest available
precision if p or more bits of significand are not practical
within the implementation.

Note: The precision of a significand should not be confused
with the number of bits used to represent the significand. In
the IEEE floating point standards, for example, the significand’s
most significant bit is implicit in single and double precision but
is explicit in extended precision. Whether that bit is implicit or
explicit does not affect the mathematical precision. In imple-
mentations that use binary floating point, the default precision
can be calculated by calling the following procedure:

(define (precision)

(do ((n 0 (+ n 1))

(x 1.0 (/ x 2.0)))

((= 1.0 (+ 1.0 x)) n)))

Note: When the underlying floating-point representation is

IEEE double precision, the |p suffix should not always be

omitted: Denormalized numbers have diminished precision, and

therefore should carry a |p suffix with the actual width of the

significand.
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The literals +inf.0 and -inf.0 represent positive and neg-
ative infinity, respectively. The +nan.0 literal represents
the NaN that is the result of (/ 0.0 0.0), and may rep-
resent other NaNs as well.

If a 〈decimal 10〉 contains no vertical bar and does not
contain one of the exponent markers s, f, d, or l, but does
contain a decimal point or the exponent marker e, then
it is an external representation for a flonum. Furthermore
inf.0, +inf.0, -inf.0, nan.0, +nan.0, and -nan.0 are
external representations for flonums. Some or all of the
other external representations for inexact reals may also
represent flonums, but that is not required by this report.

If a 〈decimal 10〉 contains a non-empty 〈mantissa width〉 or
one of the exponent markers s, f, d, or l, then it represents
an inexact number, but does not necessarily represent a
flonum.

3.3. Read syntax

The read syntax describes the syntax of syntactic datums
in terms of a sequence of 〈lexeme〉s, as defined in the lexical
syntax.

Syntactic datums include the lexeme datums described in
the previous section as well as the following constructs for
forming compound structure:

• pairs and lists, enclosed by ( ) or [ ] (see sec-
tion 3.3.3)

• vectors (see section 3.3.2)

Note that the sequence of characters “(+ 2 6)” is not a
syntactic datum representing the integer 8, even though
it is a base-library expression evaluating to the integer 8;
rather, it is a datum representing a three-element list, the
elements of which are the symbol + and the integers 2 and
6.

3.3.1. Formal account

The following grammar describes the syntax of syntactic
datums in terms of various kinds of lexemes defined in the
grammar in section 3.2:

〈datum〉 −→ 〈simple datum〉
| 〈compound datum〉

〈simple datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉
〈list〉 −→ (〈datum〉*)

| [〈datum〉*]
| (〈datum〉+ . 〈datum〉)

| [〈datum〉+ . 〈datum〉]
| 〈abbreviation〉

〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@ | #’ | #` | #, | #,@
〈vector〉 −→ #(〈datum〉*)
〈bytes〉 −→ #vu8(〈u8〉*)
〈u8〉 −→ 〈any 〈number〉 denoting an exact

integer in {0, . . . , 255}〉

3.3.2. Vectors

Vector datums, denoting vectors of values (see section 9.16,
are written using the notation #(〈datum〉 . . . ). For exam-
ple, a vector of length 3 containing the number zero in
element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector,
and is not a base-library expression that evaluates to a
vector.

3.3.3. Pairs and lists

List and pair datums, denoting pairs and lists of values
(see section 9.12) are written using parentheses or brackets.
Matching pairs of parentheses that occur in the rules of
〈list〉 are equivalent to matching pairs of brackets.

The most general notation for Scheme pairs as syntactic
datums is the “dotted” notation (〈datum1〉 . 〈datum2〉)
where 〈datum1〉 is the representation of the value of the
car field and 〈datum2〉 is the representation of the value of
the cdr field. For example (4 . 5) is a pair whose car is
4 and whose cdr is 5. Note that (4 . 5) is the external
representation of a pair, not an expression that evaluates
to a pair.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

The general rule is that, if a dot is followed by an open
parenthesis, the dot, the open parenthesis, and the match-
ing closing parenthesis can be omitted in the external rep-
resentation.
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3.3.4. Bytes objects

Bytes datums, denoting bytes objects (see section 11), are
written using the notation #vu8(〈u8〉 . . . ), where the 〈u8〉s
repersent the octets of the bytes object. For example, a
bytes object of length 3 containing the octets 2, 24, and
123 can be written as follows:

#vu8(2 24 123)

Note that this is the external representation of a bytes
object, and is not an expression that evaluates to a bytes
object.

3.3.5. Abbreviations

’〈datum〉
`〈datum〉
,〈datum〉
,@〈datum〉
#’〈datum〉
#`〈datum〉
#,〈datum〉
#,@〈datum〉

Each of these is an abbreviation:
’〈datum〉 for (quote 〈datum〉),
`〈datum〉 for (quasiquote 〈datum〉),
,〈datum〉 for (unquote 〈datum〉),
,@〈datum〉 for (unquote-splicing 〈datum〉),
#’〈datum〉 for (syntax 〈datum〉),
#`〈datum〉 for (quasisyntax 〈datum〉),
#,〈datum〉 for (unsyntax 〈datum〉), and
#,@〈datum〉 for (unsyntax-splicing 〈datum〉).

4. Semantic concepts

4.1. Programs and libraries

A Scheme program consists of a script together with a set of
libraries, each of which defines a part of the program con-
nected to the others through explicitly specified exports
and imports. A library consists of a set of export and
import specifications and a body, which consists of decla-
rations, definitions, and expressions; a script is similar to a
library, but has no export specifications. Chapters 6 and 7
describe the syntax and semantics of libraries and scripts,
respectively. Subsequent chapters describe various stan-
dard libraries provided by a Scheme system. In particular,
chapter 9 describes a base library that defines many of the
constructs traditionally associated with Scheme programs.

The division between the base library and other standard
libraries is based on use, not on construction. In particular,
some facilities that are typically implemented as “primi-
tives” by a compiler or run-time libraries rather than in

terms of other standard procedures or syntactic forms are
not part of the base library, but are defined in separate
libraries. Examples include the fixnums and flonums li-
braries, the exceptions and conditions libraries, and the
libraries for records.

4.2. Variables, syntactic keywords, and re-
gions

In a library body, an identifier may name a type of syntax,
or it may name a location where a value can be stored. An
identifier that names a type of syntax is called a syntactic
keyword and is said to be bound to that syntax. An identi-
fier that names a location is called a variable and is said to
be bound to that location. The set of all visible bindings
in effect at some point in a program is known as the en-
vironment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’s
value. By abuse of terminology, the variable is sometimes
said to name the value or to be bound to the value. This
is not quite accurate, but confusion rarely results from this
practice.

Certain expression types are used to create new kinds
of syntax and to bind syntactic keywords to those new
syntaxes, while other expression types create new loca-
tions and bind variables to those locations. These ex-
pression types are called binding constructs. The con-
structs in the base library that bind syntactic keywords
are listed in section 6.3.2. The most fundamental of the
variable binding constructs is the lambda expression, be-
cause all other variable binding constructs can be explained
in terms of lambda expressions. The other variable binding
constructs are let, let*, letrec*, letrec, let-values,
let*-values, do, and case-lambda expressions (see sec-
tions 9.5.2, 9.5.6, 9.19, and 20.2).

Like Algol and Pascal, and unlike most other dialects of
Lisp except for Common Lisp, Scheme is a statically scoped
language with block structure. To each place where an
identifier is bound in a program there corresponds a region
of the program text within which the binding is visible.
The region is determined by the particular binding con-
struct that establishes the binding; if the binding is estab-
lished by a lambda expression, for example, then its region
is the entire lambda expression. Every mention of an iden-
tifier refers to the binding of the identifier that established
the innermost of the regions containing the use. If there
is no binding of the identifier whose region contains the
use, then the use refers to the binding for the variable in
the top level environment of the library body or a binding
imported from another library. (See chapter 6.) If there is
no binding for the identifier, it is said to be unbound.
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4.3. Exceptional situations

A variety of exceptional situations are distinguished in this
report, among them violations of program syntax, viola-
tions of a procedure’s specification, violations of imple-
mentation restrictions, and exceptional situations in the
environment. When an exception is raised, an object is
provided that describes the nature of the exceptional siu-
tation. The report uses the condition system described in
section 14.2 to describe exceptional situations, classifying
them by condition types.

For most of the exceptional situations described in this re-
port, portable programs cannot rely upon the exception
being continuable at the place where the situation was de-
tected. For those exceptions, the exception handler that
is invoked by the exception should not return. In some
cases, however, continuing is permissible; the handler may
return. See section 14.1.

An implementation restriction is a limitation imposed by
an implementation. Implementations are required to raise
an exception when they are unable to continue correct ex-
ecution of a correct program due to some implementation
restriction.

Some possible implementation restrictions such as the lack
of representations for NaNs and infinities (see section 16.1)
are anticipated by this report, and implementations must
raise an exception of the appropriate condition type if they
encounter such a situation.

Implementation restrictions not explicitly covered in this
report are of course discouraged, but implementations are
required to report violations of implementation restric-
tions. For example, an implementation may raise an excep-
tion with condition type &implementation-restriction
if it does not have enough storage to run a program.

The above requirements for violations and implementation
restrictions apply only in scripts and libraries that are said
to be safe. In unsafe code, implementations might not raise
the exceptions that are normally raised in those situations.
The distinction between safe and unsafe code is explained
in section 4.4.

4.4. Safety

The standard libraries whose exports are described by this
document are said to be safe libraries. Libraries and scripts
that import only from safe libraries, and do not contain
any (safe 0) or unsafe declarations (see section 9.22),
are also said to be safe.

As defined by this document, the Scheme programming
language is safe in the following sense: If a Scheme script
is said to be safe, then its execution cannot go so badly
wrong as to crash or to continue to execute while behaving

in ways that are inconsistent with the semantics described
in this document, unless said execution first encounters
some implementation restriction or other defect in the im-
plementation of Scheme that is executing the script.

Violations of an implementation restriction
must raise an exception with condition type
&implementation-restriction, as must all violations
and errors that would otherwise threaten system integrity
in ways that might result in execution that is inconsistent
with the semantics described in this document.

The above safety properties are guaranteed only for scripts
and libraries that are said to be safe. Implementations may
provide access to unsafe libraries, and may interpret (safe
0) and unsafe declarations in ways that cannot guarantee
safety.

4.5. Multiple return values

A Scheme expression can evaluate to an arbitrary finite
number of values. These values are passed to the expres-
sion’s continuation.

Not all continuations accept any number of values: A con-
tinuation that accepts the argument to a procedure call is
guaranteed to accept exactly one value. The effect of pass-
ing some other number of values to such a continuation is
unspecified. The call-with-values procedure described
in section 9.18 makes it possible to create continuations
that accept specified numbers of return values. If the num-
ber of return values passed to a continuation created by a
call to call-with-values is not accepted by its consumer
that was passed in that call, then an exception is raised.

A number of forms in the base library have sequences of ex-
pressions as subforms that are evaluated sequentially, with
the return values of all but the last expression being dis-
carded. The continuations discarding these values accept
any number of values.

4.6. Storage model

Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A
string, for example, denotes as many locations as there
are characters in the string. (These locations need not
correspond to a full machine word.) A new value may be
stored into one of these locations using the string-set!
procedure, but the string continues to denote the same
locations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section 9.6) to the object
last stored in the location before the fetch.
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Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them.

In many systems it is desirable for constants (i.e. the val-
ues of literal expressions) to reside in read-only-memory.
To express this, it is convenient to imagine that every
object that denotes locations is associated with a flag
telling whether that object is mutable or immutable. In
such systems literal constants and the strings returned by
symbol->string are immutable objects, while all objects
created by the other procedures listed in this report are
mutable. An attempt to store a new value into a location
that is denoted by an immutable object should raise an
exception.

4.7. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are ‘tail calls’. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure may still return. Note that this in-
cludes calls that may be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [11]. The rules for identifying tail calls
in base-library constructs are described in section 9.23.
Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

5. Notation and terminology

5.1. Entry format

The chapters describing bindings in the base library and
the standard libraries are organized into entries. Each en-
try describes one language feature or a group of related
features, where a feature is either a syntactic construct or
a built-in procedure. An entry begins with one or more
header lines of the form

template category

If category is “syntax”, the entry describes a special syn-
tactic form, and the template gives the syntax of the form.
Even though the template is written in a notation similar
to a right-hand side of the BNF rules in chapter 3, it de-
scribes the set of forms equivalent to the forms matching
the template as syntactic datums.

Components of the form described by a template are des-
ignated by syntactic variables, which are written using an-
gle brackets, for example, 〈expression〉, 〈variable〉. Case
is insignificant in syntactic variables. Syntactic variables
should be understood to denote other forms, or, in some
cases, sequences of them. A syntactic variable may refer
to a non-terminal in the grammar for syntactic datums,
in which case only forms matching that non-terminal are
permissible in that position. For example, 〈expression〉
stands for any form which is a syntactically valid expres-
sion. Other non-terminals that are used in templates will
be defined as part of the specification.

The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.

It is a syntax violation if a component of a form does not
have the shape specified by a template—an exception with
condition type &syntax is raised at expansion time.

Descriptions of syntax may express other restrictions on
the components of a form. Typically, such a restriction is
formulated as a phrase of the form “〈x〉 must be a . . . ”
(or otherwise using the word “must.”) As with implicit
restrictions, such a phrase means that an exception with
condition type &syntax is raised if the component does not
meet the restriction.

If category is “procedure”, then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Parameter names in the template are italicized .
Thus the header line

(vector-ref vector k) procedure
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indicates that the built-in procedure vector-ref takes two
arguments, a vector vector and an exact non-negative in-
teger k (see below). The header lines

(make-vector k) procedure
(make-vector k fill) procedure

indicate that the make-vector procedure takes either
one or two arguments. The parameter names are case-
insensitive: Vector is the same as vector .

An operation that is presented with an argument that it
is not specified to handle raises an exception with condi-
tion type &contract. Also, if the number of arguments
presented to an operation does not match any specified
count, an exception with condition type &contract must
be raised.

For succinctness, we follow the convention that if a param-
eter name is also the name of a type, then the correspond-
ing argument must be of the named type. For example,
the header line for vector-ref given above dictates that
the first argument to vector-ref must be a vector. The
following naming conventions imply type restrictions:

obj any object
z complex number
x real number
y real number
q rational number
n integer
k exact non-negative integer
octet exact integer in {0, . . . , 255}
bytes exact integer in {-128, . . . , 127}
char character (see section 9.14)
pair pair (see section 9.12)
list list (see section 5.2)
vector vector (see section 9.16)
string string (see section 9.15)
condition condition (see section 14.2)
bytes bytes object (see chapter 11)
proc procedure (see section 1.5)

Other type restrictions are expressed through parameter
naming conventions that are described in specific chapters.
For example, chapter 16 uses a number of special parameter
variables for the various subsets of the numbers.

Descriptions of procedures may express other restrictions
on the arguments of a procedure. Typically, such a restric-
tion is formulated as a phrase of the form “x must be a
. . . ” (or otherwise using the word “must.”) As with im-
plicit restrictions, such a phrase means that an exception
with condition type &contract is raised if the argument
does not meet the restriction.

If category is something other than “syntax” and “proce-
dure,” then the entry describes a non-procedural value, and
the category describes the type of that value. The header
line

&who condition type

indicates that &who is a condition type.

The description of an entry occasionally states that it is
the same as another entry. This means that both entries
are equivalent. Specifically, it means that if both entries
have the same name and are thus exported from different
libraries, the entries from both libraries can be imported
under the same name without conflict.

5.2. List arguments

List arguments are immutable in programs that do not
make use of the (r6rs mutable-pairs) library. In such
programs, a procedure accepting a list as an argument can
check whether the argument is a list by traversing it.

In programs that mutate pairs through use of the (r6rs
mutable-pairs) library, a pair that is the head of a list at
one moment may not always be the head of a list. Thus
a traversal of the structure cannot by itself guarantee that
the structure is a list; one must also know that no con-
current or interleaved computation can mutate the pairs of
the structure. This greatly complicates the description of
how certain procedures must verify that their arguments
are valid.

For that reason, the specifications of procedures that ac-
cept lists generally assume that those lists are not mutated.
Section 23.2 relaxes that assumption and states more pre-
cise restrictions on the arguments to these procedures.

5.3. Evaluation examples

The symbol “=⇒” used in program examples should be
read “evaluates to.” For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that may be represented exter-
nally by the sequence of characters “40”. See section 3.3
for a discussion of external representations of objects.

The “=⇒” symbol is also used when the evaluation of an
expression raises an exception. For example,

(integer->char #xD800) =⇒ &contract exception

means that the evaluation of the expression
(integer->char #xD800) causes an exception with
condition type &contract to be raised.
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5.4. Unspecified behavior

If the value of an expression is said to be “unspecified,”
then the expression must evaluate without raising an ex-
ception, but the values returned depends on the imple-
mentation; this report explicitly does not say what values
should be returned.

Some expressions are specified to return the unspecified
value, which is a special value returned by the unspecified
procedure. (See section 9.8.) In this case, the return value
is meaningless, and programmers are discouraged from re-
lying on its specific nature.

5.5. Exceptional situations

When speaking of an exceptional situation (see section 4.3),
this report uses the phrase “an exception is raised” to in-
dicate that implementations must detect the situation and
report it to the program through the exception system de-
scribed in chapter 14.

Several variations on “an exception is raised” are possible:

• “An exception should be raised” means that imple-
mentations are encouraged, but not required, to detect
the situation and to raise an exception.

• “An exception may be raised” means that implemen-
tations are allowed, but not required or encouraged,
to detect the situation and to raise an exception.

• “An exception might be raised” means that implemen-
tations are allowed, but discouraged, to detect the sit-
uation and to raise an exception.

This report uses the phrase “an exception with condition
type t” to indicate that the object provided with the ex-
ception is a condition object of the specified type.

The phrase “a continuable exception is raised” indicates an
exceptional situation that permits the exception handler
to return, thereby allowing program execution to continue
at the place where the original exception occurred. See
sectionj 14.1.

For example, an exception with condition type &contract
is raised if a procedure is passed an argument that the
procedure is not explicitly specified to handle, even though
such domain exceptions are not always mentioned in this
report.

5.6. Naming conventions

By convention, the names of procedures that always return
a boolean value usually end in “?”. Such procedures are
called predicates.

By convention, the names of procedures that store values
into previously allocated locations (see section 4.6) usually
end in “!”. Such procedures are called mutation proce-
dures. By convention, the value returned by a mutation
procedure is the unspecified value (see section 9.8), but
this convention is not always followed.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

5.7. Syntax violations

Scheme implementations conformant with this report must
detect violations of the syntax. A syntax violation is an
error with respect to the syntax of library bodies, script
bodies, or the “syntax” entries in the specification of the
base library or the standard libraries. Moreover, attempt-
ing to assign to an immutable variable (i.e., the variables
exported by a library; see section 6.1) is also considered a
syntax violation.

If a script or library form is not syntactically correct, then
the execution of that script or library must not be allowed
to begin.

6. Libraries

The library system presented here is designed to let pro-
grammers share libraries, i.e., code that is intended to be
incorporated into larger programs, and especially into pro-
grams that use library code from multiple sources. The
library system supports macro definitions within libraries,
allows macro exports, and distinguishes the phases in
which definitions and imports are needed. This chapter de-
fines the notation for libraries and a semantics for library
expansion and execution.

Libraries address the following specific goals:

• Separate compilation and analysis; no two libraries
have to be compiled at the same time (i.e., the mean-
ings of two libraries cannot depend on each other cycli-
cally, and compilation of two different libraries cannot
rely on state shared across compilations), and signif-
icant program analysis can be performed without ex-
amining a whole program.

• Independent compilation/analysis of unrelated li-
braries, where “unrelated” means that neither de-
pends on the other through a transitive closure of im-
ports.

• Explicit declaration of dependencies, so that the
meaning of each identifier is clear at compile time, and
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so that there is no ambiguity about whether a library
needs to be executed for another library’s compile time
and/or run time.

• Namespace management, so that different library pro-
ducers are unlikely to define the same top-level name.

It does not address the following:

• Mutually dependent libraries.

• Separation of library interface from library implemen-
tation.

• Code outside of a library (e.g., 5 by itself as a pro-
gram).

• Local modules and local imports.

6.1. Library form

A library declaration contains the following elements:

• a name for the library (possibly compound, with ver-
sioning),

• a list of exports, which name a subset of the bindings
defined within or imported into the library,

• a list of import dependencies, where each dependency
specifies:

– the imported library’s name,

– the relevant phases, e.g., expand or run time, and

– the subset of the library’s exports to make avail-
able within the importing library, and the local
names to use within the importing library for
each of the library’s exports, and

• a library body, consisting of a sequence of definitions
preceded by a sequence of declarations and followed
by a sequence of expressions.

A library definition must have the following form:

(library 〈library name〉
(export 〈export spec〉 ...)

(import 〈import spec〉 ...)

〈library body〉)

The 〈library name〉 specifies the name of the library,
the export form specifies the exported bindings, and
the import form specifies the imported bindings. The
〈library body〉 specifies the set of definitions, both for local
(unexported) and exported bindings, and the set of initial-
ization expressions (commands) to be evaluated for their

effects. The exported bindings may be defined within the
library or imported into the library.

An identifier can be imported from two or more libraries
or for two phases from the same library only if the bind-
ing exported by each library is the same (i.e., the binding
is defined in one library, and it arrives through the im-
ports only by exporting and re-exporting). Otherwise, no
identifier can be imported multiple times, defined multi-
ple times, or both defined and imported. No identifiers are
visible within a library except for those explicitly imported
into the library or defined within the library.

A 〈library name〉 must be one of the following:

〈identifier〉
(〈identifier1〉 〈identifier2〉 ... 〈version〉)

where 〈version〉 is empty or has the following form:

(〈subversion1〉 〈subversion2〉 ...)

Each 〈subversion〉 must be an exact nonnegative integer.

As a 〈library name〉, 〈identifier〉 is shorthand for
(〈identifier〉).
Each 〈import spec〉 specifies a set of bindings to be im-
ported into the library, the phases in which they are to
be available, and the local names by which they are to be
known. A 〈import spec〉 must be one of the following:

〈import set〉
(for 〈import set〉 〈import phase〉 ...)

An 〈import phase〉 is one of the following:

run

expand

(meta 〈level〉)

where 〈level〉 is an exact nonnegative integer.

As an 〈import phase〉, run is an abbreviation for (meta
0), and expand is an abbreviation for (meta 1). Phases
are discussed in section 6.2.

An 〈import set〉 names a set of bindings from another li-
brary, and possibly specifies local names for the imported
bindings. It must be one of the following:

〈library reference〉
(only 〈import set〉 〈identifier〉 ...)

(except 〈import set〉 〈identifier〉 ...)

(add-prefix 〈import set〉 〈identifier〉)
(rename 〈import set〉 (〈identifier〉 〈identifier〉) ...)

A 〈library reference〉 identifies a library by its (possibly
compound) name and optionally by its version. It must
have one the following forms:

〈identifier〉
(〈identifier1〉 〈identifier2〉 ... 〈version reference〉)

〈Identifier〉 is shorthand for (〈identifier〉). A
〈version reference〉 must have one of the following
forms:
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〈empty〉
(〈subversion reference1〉 〈subversion reference2〉 ...)

A 〈subversion reference〉 must have one of the following
forms:

〈subversion〉
〈subversion condition〉

where a 〈subversion condition〉 must have one of these
forms:

(>= 〈subversion〉)
(<= 〈subversion〉)
(and 〈subversion condition1〉 〈subversion condition2〉 ...)

(or 〈subversion condition1〉 〈subversion condition2〉 ...)

(not 〈subversion condition〉)

The sequence of identifiers in the importing library’s
〈library reference〉 must match the sequence of identifiers
in the imported library’s 〈library name〉. The importing
library’s 〈version reference〉 specifies a predicate on a pre-
fix of the imported library’s 〈version〉. Each integer must
match exactly and each condition has the expected mean-
ing. Everything beyond the prefix specified in the version
reference matches unconditionally. When more than one
library is identified by a library reference, the choice of li-
braries is determined in some implementation-dependent
manner.

To avoid problems such as incompatible types and repli-
cated state, two libraries whose library names contain the
same sequence of identifiers but whose versions do not
match cannot co-exist in the same program.

By default, all of an imported library’s exported bind-
ings are made visible within an importing library using
the names given to the bindings by the imported library.
The precise set of bindings to be imported and the names
of those bindings can be adjusted with the only, except,
add-prefix, and rename forms as described below.

• The only form produces a subset of the bindings
from another 〈import set〉, including only the listed
〈identifier〉s; if any of the included 〈identifier〉s is not
in 〈import set〉, an exception is raised.

• The except form produces a subset of the bindings
from another 〈import set〉, including all but the listed
〈identifier〉s; if any of the excluded 〈identifier〉s is not
in 〈import set〉, an exception is raised.

• The add-prefix adds the 〈identifier〉 prefix to each
name from another 〈import set〉.

• The rename form, for each pair of identifiers
(〈identifier〉 〈identifier〉), removes a binding from the
set from 〈import set〉, and adds it back with a different
name. The first identifier is the original name, and the
second identifier is the new name. If the original name
is not in 〈import set〉, or if the new name is already in
〈import set〉, an exception is raised.

An 〈export spec〉 names a set of imported and locally de-
fined bindings to be exported, possibly with different exter-
nal names. An 〈export spec〉must have one of the following
forms:

〈identifier〉
(rename (〈identifier〉 〈identifier〉) ...)

In an 〈export spec〉, an 〈identifier〉 names a single bind-
ing defined within or imported into the library, where the
external name for the export is the same as the name of
the binding within the library. A rename spec exports the
binding named by the first 〈identifier〉 in each pair, using
the second 〈identifier〉 as the external name.

The 〈library body〉 of a library form consists of forms
that are classified into declarations, definitions, and ex-
pressions. Which forms belong to which class depends
on the imported libraries and the result of expansion—
see chapter 8. Generally, forms that are not declarations
(see section 9.22 for declarations available through the base
library) or definitions (see section 9.2 for definitions avail-
able through the base library) are expressions.

A 〈library body〉 is like a 〈body〉 (see section 9.4) except
that 〈library body〉s need not include any expressions. It
must have the following form:

〈declaration〉 ... 〈definition〉 ... 〈expression〉 ...

When base-library begin forms occur in a library body
prior to the first expression, they are spliced into the body;
see section 9.5.7. Some or all of the library body, including
portions wrapped in begin forms, may be specified by a
syntactic abstraction (see section 6.3.2).

The transformer expressions and transformer bindings are
created from left to right, as described in chapter 8. The
variable-definition right-hand-side expressions are evalu-
ated from left to right, as if in an implicit letrec*, and
the body expressions are also evaluated from left to right
after the variable-definition right-hand-side expressions. A
fresh location is created for each exported variable and ini-
tialized to the value of its local counterpart. The effect of
returning twice to the continuation of the last body expres-
sion is unspecified.

The names library, export, import, for, run, expand,
meta, import, export, only, except, and rename appear-
ing in the library syntax are part of the syntax and are
not reserved, i.e, the same can be used for other purposes
within the library or even exported from or imported into
a library with different meanings, without affecting their
use in the library form.

In the case of any ambiguities that arise from the use of
one of these names as a shorthand (single-identifier) li-
brary name, the ambiguity should be resolved in favor
of the interpretation of the name as library syntax. For
example, (import (for lib expand)) should be taken
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as importing library lib for expand, not as importing
a library named (for lib expand). The user can al-
ways eliminate such ambiguities by avoiding the shorthand
〈library reference〉 syntax when such an ambiguity might
arise.

Bindings defined with a library are not visible in code out-
side of the library, unless the bindings are explicitly ex-
ported from the library. An exported macro may, however,
implicitly export an otherwise unexported identifier defined
within or imported into the library. That is, it may insert a
reference to that identifier into the output code it produces.

All explicitly exported variables are immutable in both the
exporting and importing libraries. An exception with con-
dition type &syntax is thus raised if an explicitly exported
variable appears on the left-hand side of a set! expres-
sion, either in the exporting or importing libraries. All
other variables defined within a library are mutable.

All implicitly exported variables are also immutable in both
the exporting and importing libraries. An exception with
condition type &syntax is thus raised if a variable appears
on the left-hand side of a set! expression in any code pro-
duced by an exported macro outside of the library in which
the variable is defined. An exception with condition type
&syntax is also raised if a reference to an assigned variable
appears in any code produced by an exported macro out-
side of the library in which the variable is defined, where
an assigned variable is one that appears on the left-hand
side of a set! expression in the exporting library.

Note: The asymmetry in the exception-raising requirements

for attempts to assign explicitly and implicitly exported vari-

ables reflects the fact that the error can be determined for im-

plicitly exported variables only when the importing library is

expanded.

6.2. Import and export phases

All bindings imported via a library’s import form are vis-
ible throughout the library’s 〈library body〉. An exception
may be raised, however, if a binding is used out of its de-
clared phase(s):

• Bindings used in run-time code must be imported “for
run,” which is equivalent to “for (meta 0).”

• Bindings used in the body of a transformer (appearing
on the right-hand-side of a transformer binding) in
run-time code must be imported “for expand,” which
is equivalent to “for (meta 1),”

• Bindings used in the body of a transformer appear-
ing within the body of a transformer in run-time code
must be imported “for (meta 2),” and so on.

The effective import phases of an imported binding are
determined by the enclosing for form, if any, in the
import form of the importing library, in addition to
the phase of the identifier in the exporting library. An
〈import set〉 without an enclosing for is equivalent to (for
〈import set〉 run). Import and export phases are com-
bined by pairwise addition of all phase combinations. For
example, references to an imported identifier exported for
phases pa and pb and imported for phases qa, qb, and qc

are valid at phases pa + qq, pa + qb, pa + qc, pb + qq, pb + qb,
and pb + qc.

The export phase of an exported binding is run for all
bindings that are defined within the exporting library. The
export phases of a reexported binding, i.e., an export im-
ported from another library, are the same as the effective
import phases of that binding within the reexporting li-
brary.

The export phase of all bindings exported by the libraries
defined in this report, except for the composite r6rs library
(see chapter 21), is run, while the export phases for all
bindings exported by r6rs are run and expand.

Rationale: The r6rs library is intended as a convenient import

for libraries where fine control over imported bindings is not

necessary or desirable. The r6rs library exports all bindings

for expand as well as run so that it is convenient for writing

macros as well as run-time code.

The effective import phases implicitly determine when in-
formation about a library must be available and also when
the various forms contained within a library must be eval-
uated.

Every library can be characterized by expand-time infor-
mation (minimally, its imported libraries, a list of the ex-
ported keywords, a list of the exported variables, and code
to evaluate the transformer expressions) and run-time in-
formation (minimally, code to evaluate the variable def-
inition right-hand-side expressions, and code to evaluate
the body expressions). The expand-time information must
be available to expand references to any exported binding,
and the run-time information must be available to evaluate
references to any exported variable binding.

If any of a library’s bindings are imported by another li-
brary “for expand” (or for any meta level greater than 0),
both expand-time and run-time information for the first
library is made available when the second library is ex-
panded. If any of a library’s bindings are imported by
another library “for run,” the expand-time information for
the first library is made available when the second library
is expanded, and the run-time information for the first li-
brary is made available when the run-time information for
the second library is made available.

It is also relevant when the code to evaluate a library’s
transformer expressions is executed and when the code
to evaluate the library’s variable-definition right-hand-side
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expressions and body expressions is executed. Executing
the transformer expressions is also said to be visiting the
library and to executing the variable-definition right-hand-
side expressions and body expressions as invoking the li-
brary. A library must be visited before code that uses its
bindings can be expanded, and it must be invoked before
code that uses its bindings can be executed. Visiting or
invoking a library may also trigger the visiting or invoking
of other libraries.

More precisely, visiting a library at phase N causes the
system to:

• Visit at phase N any library that is imported by this
library “for run” and that is not yet visited at phase
N .

• Visit at phase N + M any library that is imported by
this library “for (meta M ),” M > 0 and that is not
yet visited at phase N + M .

• Invoke at phase N + M any library that is imported
by this library “for (meta M ),” M > 0 and that is
not yet invoked at phase N + M .

• Evaluate the library’s transformer expressions.

The order in which imported libraries are visited and in-
voked is not defined, but imported libraries must be visited
and invoked before the library’s transformer expressions
are evaluated.

Similarly, invoking a library at meta phase N causes the
system to:

• Invoke at phase N any library that is imported by this
library “for run” and that is not yet invoked at phase
N .

• Evaluate the library’s variable-definition right-hand-
side and body expressions.

The order in which imported libraries are invoked is not
defined, but imported libraries must be invoked before the
library’s variable-definition right-hand-side and body ex-
pressions are evaluated.

An implementation is allowed to distinguish visits of a li-
brary across different phases or to treat a visit at any phase
as a visit at all phases. Similarly, an implementation is al-
lowed to distinguish invocations of a library across different
phases or to treat an invocation at any phase as an invo-
cation at all phases. An implementation is further allowed
to start each expansion of a library form by removing all
library bindings above phase 0. Thus, a portable library’s
meaning must not depend on whether the invocations are
distinguished or preserved across phases or library expan-
sions.

6.3. Primitive syntax

After the import form within a library form, the forms
that constitute a library body depend on the libraries that
are imported. In particular, imported syntactic keywords
determine most of the available forms, and whether each
form is a declaration, definition, or expression. A few
form types are always available independent of imported
libraries, however, including constant literals, variable ref-
erences, procedure calls, and macro uses.

6.3.1. Primitive expression types

The entries in this section all describe expressions, which
may occur in the place of 〈expression〉 syntactic variables.
See also section 9.5

Constant literals

〈constant〉 syntax

Numerical constants, string constants, character constants,
and boolean constants evaluate “to themselves.”

"abc" =⇒ "abc"

145932 =⇒ 145932

#t =⇒ #t

As noted in section 4.6, the value of a literal expression
may be immutable.

Variable references

〈variable〉 syntax

An expression consisting of a variable (section 4.2) is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is a syntax violation to reference an unbound
variable.

; these examples assume the base library

; has been imported

(define x 28)

x =⇒ 28

Procedure calls

(〈operator〉 〈operand1〉 . . . ) syntax

A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. A form in an expression
context is a procedure call if 〈operator〉 is not an identifier
bound as a syntactic keyword.
When an procedure call is evaluated, the operator and
operand expressions are evaluated (in an unspecified or-
der) and the resulting procedure is passed the resulting
arguments..
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; these examples assume the base library

; has been imported

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

If the value of 〈operator〉 is not a procedure, an exception
with condition type &contract is raised.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the form () is a legitimate

expression. In Scheme, expressions written as list/pair forms

must have at least one subexpression, so () is not a syntactically

valid expression.

6.3.2. Macros

Scheme programs can define and use new derived expres-
sions, definitions, and declarations, called syntactic ab-
stractions or macros. A syntactic abstraction is created
by binding a keyword to a macro transformer or, simply,
transformer. . The transformer determines how a use of
the macro is transcribed into a more primitive forms.

Macro uses typically have the form:

(〈keyword〉 〈datum〉 . . . )

where 〈keyword〉 is an identifier that uniquely determines
the type of form. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number of
〈datum〉s and the syntax of each depends on the syntactic
abstraction. Macro uses can also take the form of improper
lists, singleton identifiers, or set! forms, where the second
subform of the set! is the keyword (see section 17.3:

(〈keyword〉 〈datum〉 . . . . 〈datum〉)
〈keyword〉
(set! 〈keyword〉 〈datum〉)

The macro definition facility consists of two parts:

• A set of forms (define-syntax, section 9.3,
let-syntax and letrec-syntax; see section 9.20)
used to create bindings for keywords, associate them
with macro transformers, and control the scope within
which they are visible, and

• a facility (syntax-case; see chapter 17) for creating
transformers via a pattern language that permits the
use of arbitrary Scheme code, and a derived facility
(syntax-rules; see section 9.21) for creating trans-
formers via the pattern language only.

Keywords occupy the same name space as variables. That
is, within the same scope, an identifier can be bound as
a variable or keyword, or neither, but not both, and local
bindings of either kind may shadow other bindings of either
kind.

Macros defined using syntax-rules are “hygienic” and
“referentially transparent” and thus preserve Scheme’s lex-
ical scoping [31, 32, 3, 10, 14]:

• If a macro transformer inserts a binding for an iden-
tifier (variable or keyword), the identifier is in effect
renamed throughout its scope to avoid conflicts with
other identifiers.

• If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regardless
of any local bindings that may surround the use of the
macro.

Macros defined using the syntax-case facility are also hy-
gienic unless datum->syntax (see section 17.6) is used.

6.4. Examples

Examples for various 〈import spec〉s and 〈export spec〉s:

(library stack

(export make push! pop! empty!)

(import r6rs)

(define (make) (list ’()))

(define (push! s v) (set-car! s (cons v (car s))))

(define (pop! s) (let ([v (caar s)])

(set-car! s (cdar s))

v))

(define (empty! s) (set-car! s ’())))

(library balloons

(export make push pop)

(import r6rs)

(define (make w h) (cons w h))

(define (push b amt)

(cons (- (car b) amt) (+ (cdr b) amt)))

(define (pop b) (display "Boom! ")

(display (* (car b) (cdr b)))

(newline)))

(library party

;; Total exports:

;; make, push, push!, make-party, pop!

(export (rename (balloon:make make)

(balloon:push push))

push!

make-party

(rename (party-pop! pop!)))
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(import r6rs

(only stack make push! pop!) ; not empty!

(add-prefix balloons balloon:))

;; Creates a party as a stack of balloons,

;; starting with two balloons

(define (make-party)

(let ([s (make)]) ; from stack

(push! s (balloon:make 10 10))

(push! s (balloon:make 12 9))

s))

(define (party-pop! p)

(balloon:pop (pop! p))))

(library main

(export)

(import r6rs party)

(define p (make-party))

(pop! p) ; displays "Boom! 108"

(push! p (push (make 5 5) 1))

(pop! p)) ; displays "Boom! 24"

Examples for macros and phases:

(library (my-helpers id-stuff)

(export find-dup)

(import r6rs)

(define (find-dup l)

(and (pair? l)

(let loop ((rest (cdr l)))

(cond

[(null? rest) (find-dup (cdr l))]

[(bound-identifier=? (car l) (car rest))

(car rest)]

[else (loop (cdr rest))])))))

(library (my-helpers values-stuff)

(export mvlet)

(import r6rs (for (my-helpers id-stuff) expand))

(define-syntax mvlet

(lambda (stx)

(syntax-case stx ()

[( [(id ...) expr] body0 body ...)

(not (find-dup

(syntax-object->list

(syntax (id ...)))))

(syntax

(call-with-values

(lambda () expr)

(lambda (id ...) body0 body ...)))]))))

(library let-div

(export let-div)

(import r6rs (my-helpers values-stuff))

(define (quotient+remainder n d)

(let ([q (quotient n d)])

(values q (- n (* q d)))))

(define-syntax let-div

(syntax-rules ()

[( n d (q r) body0 body ...)

(mvlet [(q r) (quotient+remainder n d)]

body0 body ...)])))

7. Scripts

A script specifies an entry point for defining and running
a Scheme program. A script specifies a set of libraries to
import and code to run. Through the imported libraries,
whether directly or the transitive closure of importing, the
script defines a complete Scheme program.

Scripts follow the convention of many common platforms of
accepting a list of string command-line arguments that may
be used to pass data to the script. Moreover, a script can
return an exact integer specifying the script’s exit value.

7.1. Script syntax

A script is a delimited piece of text, typically a file, that
follows the following syntax:

〈script〉 −→ 〈script header〉 〈script substance〉
〈script header〉 −→ #! 〈space〉 /usr/bin/env 〈space〉

scheme-script 〈linefeed〉
〈script substance〉 −→ #!r6rs 〈import form〉 〈script body〉

| 〈import form〉 〈script body〉
〈import form〉 −→ (import 〈import spec〉*)
〈script body〉 −→ 〈script body form〉* 〈expression〉
〈script body form〉 −→ 〈declaration〉

| 〈definition〉
| 〈expression〉

7.1.1. Script header

The first line of a script is:

#! /usr/bin/env scheme-script

Implementations are required to ignore the first line of
a script, however, even if it is not the above. This al-
lows script headers to be customized locally by altering
the script header from its default portable form.

Implementations should provide an executable program
named scheme-script that is capable of executing scripts
on platforms where this makes sense. On most Unix-like
systems, due to the use of the /usr/bin/env trampoline,
this program may itself be a shell script.

Most platforms require that scripts be marked as exe-
cutable in some way, the details of which vary by plat-
form and are beyond the scope of this report. Platforms
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which do not support the Unix-like script header syntax
may need to use other mechanisms, such as a registered
filename extension, in order to associate a script with the
scheme-script executable.

7.1.2. Script substance

The rules for 〈script substance〉 specify syntax at the form
level.

The 〈import form〉 is identical to the import clause in li-
braries (see section 6.1), and specifies a set of libraries to
import. A 〈script body〉 is like a 〈library body〉 (see sec-
tion 6.1), except that declarations, definitions and expres-
sions may occur in any order, and that the final form of
the script body must be an expression. Thus, the syntax
specified by 〈script body form〉 refers to the result of macro
expansion.

When base-library begin forms occur anywhere within
a script body, they are spliced into the body; see sec-
tion 9.5.7. Some or all of the script body, including portions
wrapped in begin forms, may be specified by a syntactic
abstraction (see section 6.3.2).

7.2. Script semantics

A script is executed by treating the script similarly to
a library, and invoking it. The semantics of a script
body may be roughly explained by a simple translation
into a library body: All declarations at the script top
level are moved to the front, and each 〈expression〉 that
appears before a variable definition in the script body
is converted into a dummy definition (define 〈variable〉
〈expression〉), where 〈variable〉 is fresh identifier. (It is
generally impossible to determine which forms are decla-
rations, definitions, and expressions without concurrently
expanding the body, so the actual translation is somewhat
more complicated; see chapter 8.)

A script may access its command-line arguments by call-
ing the command-line-arguments procedure (see sec-
tion 20.4). The final expression of a script must return an
exact integer, which becomes the exit value of the script.
How that exit value is communicated to the environment
is implementation-specific. When a script is invoked as a
Unix or Windows program, the exit value simply becomes
the exit status of the program.

If an exception with a &serious condition is raised dur-
ing the execution of the script, the default exception
handler behaves as described in section 14.1, and an
implementation-specific exit value is communicated to the
environment. On Unix, this value is according to the defi-
nition of EX SOFTWARE in the sysexits.h header [24].

8. Expansion process

Macro uses (see section 6.3.2) are expanded into core forms
at the start of evaluation (before compilation or inter-
pretation) by a syntax expander. (The set of core forms
is implementation-dependent, as is the representation of
these forms in the expander’s output.) If the expander en-
counters a syntactic abstraction, it invokes the associated
transformer to expand the syntactic abstraction, then re-
peats the expansion process for the form returned by the
transformer. If the expander encounters a core form, it re-
cursively processes the subforms, if any, and reconstructs
the form from the expanded subforms. Information about
identifier bindings is maintained during expansion to en-
force lexical scoping for variables and keywords.

To handle internal definitions, the expander processes the
initial forms in a 〈body〉 (see section 9.4) or 〈library body〉
(see section 6.1) from left to right. How the expander pro-
cesses each form encountered as it does so depends upon
the kind of form.

macro use The expander invokes the associated trans-
former to transform the macro use, then recursively
performs whichever of these actions are appropriate
for the resulting form.

declaration form If none of the body forms processed so
far is a definition, the declaration is handled in some
implementation-dependent fashion. It is a syntax vio-
lation for a declaration to appear after a definition.

define-syntax form The expander expands and evalu-
ates the right-hand-side expression and binds the key-
word to the resulting transformer.

define form The expander records the fact that the de-
fined identifier is a variable but defers expansion of the
right-hand-side expression until after all of the defini-
tions have been processed.

begin form The expander splices the subforms into the
list of body forms it is processing. (See section 9.5.7.)

let-syntax or letrec-syntax form The expander
splices the inner body forms into the list of (outer)
body forms it is processing, arranging for the key-
words bound by the let-syntax and letrec-syntax
to be visible only in the inner body forms.

expression, i.e., nondefinition The expander com-
pletes the expansion of the deferred right-hand-side
forms and the current and remaining expressions in
the body, then constructs a residual letrec* form
from the defined variables, expanded right-hand-side
expressions, and expanded body expressions.
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It is a syntax violation if the keyword that identifies one
of the body forms as a definition (derived or core) is re-
defined by the same definition or a later definition in the
same body. To detect this error, the expander records the
identifying keyword for each macro use, define-syntax
form, define form, begin form, let-syntax form, and
letrec-syntax form it encounters while processing the
definitions and checks each newly defined identifier (define
or define-syntax left-hand side) against the recorded key-
words, as with bound-identifier=? (section 17.5). For
example, the following forms are syntax violations.

(let ()

(define define 17)

define)

(let-syntax ([def0 (syntax-rules ()

[( x) (define x 0)])])

(let ()

(def0 z)

(define def0 ’(def 0))

(list z def0)))

Expansion of each variable definition right-hand side is de-
ferred until after all of the definitions have been seen so
that each keyword and variable reference within the right-
hand side resolves to the local binding, if any.

Note that this algorithm does not directly reprocess any
form. It requires a single left-to-right pass over the defini-
tions followed by a single pass (in any order) over the body
expressions and deferred right-hand sides.

For example, in

(lambda (x)

(define-syntax defun

(syntax-rules ()

[( (x . a) e) (define x (lambda a e))]))

(defun (even? n) (or (= n 0) (odd? (- n 1))))

(define-syntax odd?

(syntax-rules () [( n) (not (even? n))]))

(odd? (if (odd? x) (* x x) x)))

The definition of defun is encountered first, and the key-
word defun is associated with the transformer resulting
from the expansion and evaluation of the corresponding
right-hand side. A use of defun is encountered next and
expands into a define form. Expansion of the right-hand
side of this define form is deferred. The definition of odd?
is next and results in the association of the keyword odd?
with the transformer resulting from expanding and eval-
uating the corresponding right-hand side. A use of odd?
appears next and is expanded; the resulting call to not
is recognized as an expression because not is bound as a
variable. At this point, the expander completes the ex-
pansion of the current expression (the not call) and the
deferred right-hand side of the even? definition; the uses

of odd? appearing in these expressions are expanded using
the transformer associated with the keyword odd?. The
final output is the equivalent of

(lambda (x)

(letrec* ([even?

(lambda (n)

(or (= n 0)

(not (even? (- n 1)))))])

(not (even? (if (not (even? x)) (* x x) x)))))

although the structure of the output is implementation de-
pendent.

Because definitions and expressions can be interleaved in a
〈script body〉 (see chapter 7), the expander’s processing of
a 〈script body〉 is somewhat more complicated. It behaves
as described above for a 〈body〉 or 〈library body〉 with the
following exceptions. First, it treats declarations that ap-
pear after any definitions or expressions as if they appeared
before all of the definitions and expressions. Second, when
the expander finds a nondefinition, it defers its expansion
and continues scanning for definitions. Once it reaches the
end of set of forms, it processes the deferred right-hand-side
and body expressions, then constructs a residual letrec*
form from the defined variables, expanded right-hand-side
expressions, and expanded body expressions. For each
body expression that appears before a variable definition in
the body, a dummy binding is created at the corresponding
place within the set of letrec* bindings, with a fresh tem-
porary variable on the left-hand side and the expression on
the right-hand side, so that left-to-right evaluation order is
preserved.

9. Base library

This chapter describes Scheme’s base library, which ex-
ports many of the procedure and syntax bindings that are
traditionally associated with Scheme.

Section 9.23 defines the rules that identify tail calls and
tail contexts in base-library constructs.

9.1. Base types

No object satisfies more than one of the following predi-
cates:

boolean? pair?

symbol? number?

char? string?

vector? procedure?

unspecified? eof-object?

null?

These predicates define the base types boolean, pair, sym-
bol, number, char (or character), string, vector, and pro-
cedure. Moreover, the empty list is a special object of its
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own type, as are the unspecified value, and the end of file
oject.

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of a
conditional test. As explained in section 9.11, all values
count as true in such a test except for #f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.

9.2. Definitions

The define forms described in this section are definitions
for value bindings and may appear anywhere other defini-
tions may appear. See section 6.1.

A 〈definition〉 must have one of the following forms:

• (define 〈variable〉 〈expression〉) This binds
〈variable〉 to a new location before assigning the
value of 〈expression〉 to it.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

• (define 〈variable〉)

This form is equivalent to

(define 〈variable〉 (unspecified))

• (define (〈variable〉 〈formals〉) 〈body〉)

〈Formals〉 must be either a sequence of zero or more
variables, or a sequence of one or more variables fol-
lowed by a space-delimited period and another vari-
able (as in a lambda expression, see section 9.5.2).
This form is equivalent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

• (define (〈variable〉 . 〈formal〉) 〈body〉)

〈Formal〉 must be a single variable. This form is equiv-
alent to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

• A syntax definition, see section 9.3.

9.3. Syntax definitions

Syntax definitions are established with define-syntax. A
define-syntax form is a 〈definition〉 and may appear any-
where other definitions may appear.

(define-syntax 〈variable〉 〈transformer spec〉) syntax

This binds the keyword 〈variable〉 to a transformer speci-
fication specified by 〈transformer spec〉, which must either
be a syntax-rules form (see section 9.21), or evaluate, at
macro-expansion time, to a transformer. (Section 17.3).

Keyword bindings established by define-syntax are vis-
ible throughout the body in which they appear, except
where shadowed by other bindings, and nowhere else, just
like variable bindings established by define. All bindings
established by a set of internal definitions, whether key-
word or variable definitions, are visible within the defini-
tions themselves. For example:

(let ()

(define even?

(lambda (x)

(or (= x 0) (odd? (- x 1)))))

(define-syntax odd?

(syntax-rules ()

((odd? x) (not (even? x)))))

(even? 10)) =⇒ #t

An implication of the left-to-right processing order (sec-
tion 8) is that one internal definition can affect whether
a subsequent form is also a definition. For example, the
expression

(let ()

(define-syntax bind-to-zero

(syntax-rules ()

((bind-to-zero id) (define id 0))))

(bind-to-zero x)

x) =⇒ 0

This behavior is irrespective of any binding for
bind-to-zero that might appear outside of the let ex-
pression.

9.4. Bodies and sequences

The body 〈body〉 of a lambda, let, let*, let-values,
let*-values, letrec*, letrec expression or that of a def-
inition with a body has the following form:

〈declaration〉 ...〈definition〉 ...〈sequence〉

〈Declaration〉 is according to section 9.22.

〈Sequence〉 has the following form:

〈expression1〉 〈expression2〉 ...



30 Revised5.91 Scheme

Definitions may occur after the declarations in a 〈body〉.
Such definitions are known as internal definitions as op-
posed to library body definitions.

With lambda, let, let*, let-values, let*-values,
letrec*, and letrec, the identifier defined by an inter-
nal definition is local to the 〈body〉. That is, the identifier
is bound, and the region of the binding is the entire 〈body〉.
For example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

When base-library begin forms occur in a body prior to
the first expression, they are spliced into the body; see
section 9.5.7. Some or all of the body, including portions
wrapped in begin forms, may be specified by a syntactic
abstraction (see section 6.3.2).

An expanded 〈body〉 (see chapter 8) containing inter-
nal definitions can always be converted into a completely
equivalent letrec* expression. For example, the let ex-
pression in the above example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

9.5. Expressions

The entries in this section describe the expressions of the
base language, which may occur in the position of the
〈expression〉 syntactic variable. The expressions also in-
clude constant literals, variable references and procedure
calls as described in section 6.3.1.

9.5.1. Literal expressions

(quote 〈datum〉) syntax

Syntax: 〈Datum〉 should be a datum value. Seman-
tics: (quote 〈datum〉) evaluates to the datum denoted
by 〈datum〉. (See section 3.3.). This notation is used to
include literal constants in Scheme code.

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

As noted in section 3.3.5, (quote 〈datum〉) may be abbre-
viated as ’〈datum〉:

’"abc" =⇒ "abc"

’145932 =⇒ 145932

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

As noted in section 4.6, the value of a literal expression
may be immutable.

9.5.2. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 must be a formal arguments list as de-
scribed below, and 〈body〉 must be according to section 9.4.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression is
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was eval-
uated is be extended by binding the variables in the formal
argument list to fresh locations, and the resulting actual ar-
gument values are stored in those locations. Then, the ex-
pressions in the body of the lambda expression (which may
contain internal definitions and thus represent a letrec*
form, see section 9.4) are evaluated sequentially in the ex-
tended environment. The result(s) of the last expression in
the body is(are) returned as the result(s) of the procedure
call.

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

((lambda (x)

(define (p y)

(+ y 1))

(+ (p x) x))

5) =⇒ 11

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 must have one of the following forms:

• (〈variable1〉 . . . ): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the ar-
guments are stored in the bindings of the correspond-
ing variables.

• 〈variable〉: The procedure takes any number of ar-
guments; when the procedure is called, the sequence
of actual arguments is converted into a newly allo-
cated list, and the list is stored in the binding of the
〈variable〉.
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• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n
is the number of formal arguments before the period
(there must be at least one). The value stored in the
binding of the last variable is a newly allocated list
of the actual arguments left over after all the other
actual arguments have been matched up against the
other formal arguments.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

It is a syntax violation for a 〈variable〉 to appear more than
once in 〈formals〉.
Each procedure created as the result of evaluating a lambda
expression is (conceptually) tagged with a storage location,
in order to make eqv? and eq? work on procedures (see
section 9.6).

9.5.3. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 must be ex-
pressions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see sec-
tion 9.11), then 〈consequent〉 is evaluated and its value(s)
is(are) returned. Otherwise 〈alternate〉 is evaluated and its
value(s) is(are) returned. If 〈test〉 yields a false value and
no 〈alternate〉 is specified, then the result of the expression
is the unspecified value.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

(if #f #f) =⇒ the unspecified value

9.5.4. Assignments

(set! 〈variable〉 〈expression〉) syntax

〈Expression〉 is evaluated, and the resulting value is stored
in the location to which 〈variable〉 is bound. 〈Variable〉
must be bound either in some region enclosing the set!
expression or at the top level of a library body. The result
of the set! expression is the unspecified value.

(let ((x 2))

(+ x 1)

(set! x 4)

(+ x 1)) =⇒ 5

It is a syntax violation if 〈variable〉 refers to an immutable
binding.

9.5.5. Derived conditionals

(cond 〈clause1〉 〈clause2〉 . . . ) syntax

Syntax: Each 〈clause〉 must be of the form

(〈test〉 〈expression1〉 . . . )

where 〈test〉 is any expression. Alternatively, a 〈clause〉
may be of the form

(〈test〉 => 〈expression〉)

The last 〈clause〉 may be an “else clause,” which has the
form

(else 〈expression1〉 〈expression2〉 . . . ).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈clause〉s in order until
one of them evaluates to a true value (see section 9.11).
When a 〈test〉 evaluates to a true value, then the remain-
ing 〈expression〉s in its 〈clause〉 are evaluated in order,
and the result(s) of the last 〈expression〉 in the 〈clause〉
is(are) returned as the result(s) of the entire cond expres-
sion. If the selected 〈clause〉 contains only the 〈test〉 and
no 〈expression〉s, then the value of the 〈test〉 is returned
as the result. If the selected 〈clause〉 uses the => alternate
form, then the 〈expression〉 is evaluated. Its value must
be a procedure that accepts one argument; this procedure
is then called on the value of the 〈test〉 and the value(s)
returned by this procedure is(are) returned by the cond
expression. If all 〈test〉s evaluate to false values, and there
is no else clause, then the result of the conditional expres-
sion is the unspecified value; if there is an else clause, then
its 〈expression〉s are evaluated, and the value(s) of the last
one is(are) returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond (’(1 2 3) => cadr)

(else #f)) =⇒ 2

A sample definition of cond in terms of simpler forms is in
appendix B.

(case 〈key〉 〈clause1〉 〈clause2〉 . . . ) syntax

Syntax: 〈Key〉 must be any expression. Each 〈clause〉 has
one of the following forms:

((〈datum1〉 . . . ) 〈expression1〉 〈expression2〉 . . . )
(else 〈expression1〉 〈expression2〉 . . . )

The second form, which specifies an “else clause,” may only
appear as the last 〈clause〉. Each 〈datum〉 is an external
representation of some object. The datums denoted by the
〈datum〉s must not be distinct.

Semantics: A case expression is evaluated as follows.
〈Key〉 is evaluated and its result is compared against each
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the datum denoted by each 〈datum〉. If the result of eval-
uating 〈key〉 is equivalent (in the sense of eqv?; see sec-
tion 9.6) to a datum, then the expressions in the corre-
sponding 〈clause〉 are evaluated from left to right and the
result(s) of the last expression in the 〈clause〉 is(are) re-
turned as the result(s) of the case expression. If the result
of evaluating 〈key〉 is different from every datum, then if
there is an else clause its expressions are evaluated and the
result(s) of the last is(are) the result(s) of the case ex-
pression; otherwise the result of the case expression is the
unspecified value.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ the unspecified value
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else ’consonant)) =⇒ consonant

A sample definition of case in terms of simpler forms is in
appendix B.

(and 〈test1〉 . . . ) syntax

Syntax: The 〈test〉s must be expressions. Semantics: The
〈test〉 expressions are evaluated from left to right, and the
value of the first expression that evaluates to a false value
(see section 9.11) is returned. Any remaining expressions
are not evaluated. If all the expressions evaluate to true
values, the value of the last expression is returned. If there
are no expressions then #t is returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

The and keyword could be defined in terms of if using
syntax-rules (see section 9.21) as follows:

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

(or 〈test1〉 . . . ) syntax

Syntax: The 〈test〉s must be expressions. Semantics: The
〈test〉 expressions are evaluated from left to right, and the
value of the first expression that evaluates to a true value
(see section 9.11) is returned. Any remaining expressions
are not evaluated. If all expressions evaluate to false values,
the value of the last expression is returned. If there are no
expressions then #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or ’(b c) (/ 3 0)) =⇒ (b c)

The or keyword could be defined in terms of if using
syntax-rules (see section 9.21) as follows:

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

9.5.6. Binding constructs

The four binding constructs let, let*, letrec*, and
letrec give Scheme a block structure, like Algol 60. The
syntax of the four constructs is identical, but they differ in
the regions they establish for their variable bindings. In a
let expression, the initial values are computed before any
of the variables become bound; in a let* expression, the
bindings and evaluations are performed sequentially; while
in a letrec* and in a letrec expression, all the bindings
are in effect while their initial values are being computed,
thus allowing mutually recursive definitions.

In addition, the binding constructs let-values and
let*-values allow the binding of results of expression re-
turning multiple values. They are analogous to let and
let* in the way they establish regions: in a let-values
expression, the initial values are computed before any of
the variables become bound; in a let*-values expression,
the bindings are performed sequentially.

Note: These forms are compatible with SRFI 11 [25].

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 9.4. It is a syntax violation for a
〈variable〉 to appear more than once in the list of variables
being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the value(s) of
the last expression of 〈body〉 is(are) returned. Each bind-
ing of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6
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(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also named let, section 9.19.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 must be a sequence of one or more expressions.

Semantics: The let* form is similar to let, but the bind-
ings are performed sequentially from left to right, and the
region of a binding indicated by (〈variable〉 〈init〉) is that
part of the let* expression to the right of the binding.
Thus the second binding is done in an environment in which
the first binding is visible, and so on.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

The let* keyword could be defined in terms of let using
syntax-rules (see section 9.21) as follows:

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 expr1) (name2 expr2) ...)

body1 body2 ...)

(let ((name1 expr1))

(let* ((name2 expr2) ...)

body1 body2 ...)))))

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 must be a sequence of one or more expressions.
It is a syntax violation for a 〈variable〉 to appear more than
once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations
holding undefined values, the 〈init〉s are evaluated in the
resulting environment (in some unspecified order), each
〈variable〉 is assigned to the result of the corresponding
〈init〉, the 〈body〉 is evaluated in the resulting environment,
and the value(s) of the last expression in 〈body〉 is(are) re-
turned. Each binding of a 〈variable〉 has the entire letrec
expression as its region, making it possible to define mutu-
ally recursive procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t

One restriction on letrec is very important: it must be
possible to evaluate each 〈init〉 without assigning or refer-
ring to the value of any 〈variable〉. If this restriction is
violated, an exception with condition type &contract is
raised. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most com-
mon uses of letrec, all the 〈init〉s are lambda expressions
and the restriction is satisfied automatically.

A sample definition of letrec in terms of simpler forms is
in appendix B.

(letrec* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 must be a sequence of one or more expressions.
It is a syntax violation for a 〈variable〉 to appear more than
once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations
holding undefined values, each 〈variable〉 is assigned in left-
to-right order to the result of evaluating the corresponding
〈init〉, the 〈body〉 is evaluated in the resulting environment,
and the value(s) of the last expression in 〈body〉 is(are) re-
turned. Despite the left-to-right evaluation and assignment
order, each binding of a 〈variable〉 has the entire letrec*
expression as its region, making it possible to define mutu-
ally recursive procedures.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

One restriction on letrec* is very important: it must be
possible to evaluate each 〈init〉 without assigning or re-
ferring to the value the corresponding 〈variable〉 or the
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〈variable〉 of any of the bindings that follow it in 〈bindings〉.
If this restriction is violated, an exception with condition
type &contract is raised. The restriction is necessary be-
cause Scheme passes arguments by value rather than by
name.

The letrec* keyword could be defined approximately
in terms of let and set! using syntax-rules (see sec-
tion 9.21) as follows:

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &contract to be raised if an
attempt to read from or write to the location occurs before
the assignments generated by the letrec* transformation
take place. (No such expression is defined in Scheme.)

(let-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . . ),

and 〈body〉 is as described in section 9.4. It is a syntax
violation for a variable to appear more than once in the
list of variables that appear as part of the formals.

Semantics: The 〈init〉s are evaluated in the current en-
vironment (in some unspecified order), and the variables
occurring in the 〈formals〉 are bound to fresh locations
containing the values returned by the 〈init〉s, where the
〈formals〉 are matched to the return values in the same
way that the 〈formals〉 in a lambda expression are matched
to the actual arguments in a procedure call. Then, the
〈body〉 is evaluated in the extended environment, and
the value(s) of the last expression of 〈body〉 is(are) re-
turned. Each binding of a variable has 〈body〉 as its re-
gion. If no 〈formals〉 match, an exception with condition
type &contract is raised.

(let-values (((a b) (values 1 2))

((c d) (values 3 4)))

(list a b c d)) =⇒ (1 2 3 4)

(let-values (((a b . c) (values 1 2 3 4)))

(list a b c)) =⇒ (1 2 (3 4))

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y a b)

A sample definition of let-values in terms of simpler
forms is in appendix B.

(let*-values 〈mv-bindings〉 〈body〉) syntax

The let*-values form is the same as with let-values,
but the bindings are processed sequentially from left
to right, and the region of the bindings indicated by
(〈formals〉 〈init〉) is that part of the let*-values expres-
sion to the right of the bindings. Thus, the second set of
bindings is evaluated in an environment in which the first
set of bindings is visible, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

The following macro defines let*-values in terms of let
and let-values:

(define-syntax let*-values

(syntax-rules ()

((let*-values () body1 body2 ...)

(let () body1 body2 ...))

((let*-values (binding1 binding2 ...)

body1 body2 ...)

(let-values (binding1)

(let*-values (binding2 ...)

body1 body2 ...)))))

9.5.7. Sequencing

(begin 〈form〉 . . . ) syntax
(begin 〈expression〉 〈expression〉 . . . ) syntax

The 〈begin〉 keyword has two different roles, depending on
its context:

• It may appear as a form in a 〈body〉 (see section 9.4),
〈library body〉 (see section 6.1), or 〈script body〉 (see
chapter 7), or directly nested in a begin form that
appears in a body. In this case, the begin form must
have the shape specified in the first header line. This
use of begin acts as a splicing form—the forms inside
the 〈body〉 are spliced intop the surrounding body, as
if the begin wrapper were not actually present.

A begin form in a 〈body〉 or 〈library body〉 must be
non-empty if it appears after the first 〈expression〉
within the body.

• It may appear as a regular expression and must have
the shape specified in the second header line. In this
case, the 〈expression〉s are evaluated sequentially from
left to right, and the value(s) of the last 〈expression〉
is(are) returned. This expression type is used to se-
quence side effects such as assignments or input and
output.
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(define x 0)

(begin (set! x 5)

(+ x 1)) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

The following macro, which uses syntax-rules (see sec-
tion 9.21), defines begin in terms of lambda. Note that it
only covers the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. It, too, only covers
the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda ignored

(begin exp2 ...))))))

9.6. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation
(it is symmetric, reflexive, and transitive). Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, and equal? is the coarsest. The
eqv? predicate is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation
on objects. Briefly, it returns #t if obj1 and obj2 should
normally be regarded as the same object. This relation is
left slightly open to interpretation, but the following par-
tial specification of eqv? holds for all implementations of
Scheme.

The eqv? procedure returns #t if one of the following holds:

• Obj1 and obj2 are both #t or both #f.

• Obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

=⇒ #t

• Obj1 and obj2 are both exact numbers, and are numer-
ically equal (see =, section see section 9.10).

• Obj1 and obj2 are both inexact numbers, are numeri-
cally equal (see =, section see section 9.10, and yield
the same results (in the sense of eqv?) when passed as
arguments to any other procedure that can be defined
as a finite composition of Scheme’s standard arith-
metic procedures.

• Obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 9.14).

• both Obj1 and obj2 are the empty list.

• Obj1 and obj2 are pairs, vectors, or strings that denote
the same locations in the store (section 4.6).

• Obj1 and obj2 are procedures whose location tags are
equal (section 9.5.2).

The eqv? procedure returns #f if one of the following holds:

• Obj1 and obj2 are of different types (section 9.1).

• One of obj1 and obj2 is #t but the other is #f.

• Obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

=⇒ #f

• One of obj1 and obj2 is an exact number but the other
is an inexact number.

• Obj1 and obj2 are rational numbers for which the =
procedure returns #f.

• Obj1 and obj2 yield different results (in the sense of
eqv?) when passed as arguments to any other proce-
dure that can be defined as a finite composition of
Scheme’s standard arithmetic procedures.

• Obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

• One of obj1 and obj2 is the empty list but the other is
not.

• Obj1 and obj2 are pairs, vectors, or strings that denote
distinct locations.
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• Obj1 and obj2 are procedures that would behave dif-
ferently (return different value(s) or have different side
effects) for some arguments.

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? ’() ’()) =⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(eqv? #f ’nil) =⇒ #f

(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ #t

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

The next set of examples shows the use of eqv? with pro-
cedures that have local state. Calls to gen-counter must
return a distinct procedure every time, since each proce-
dure has its own internal counter. The gen-loser pro-
cedure, however, returns equivalent procedures each time,
since the local state does not affect the value or side effects
of the procedures.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) =⇒ #t

(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ #t

(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since it is the effect of trying to modify constant objects
(those returned by literal expressions) is unspecified, im-
plementations are permitted, though not required, to share
structure between constants where appropriate. Thus the
value of eqv? on constants is sometimes implementation-
dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified
(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

Rationale: The above definition of eqv? allows implementa-

tions latitude in their treatment of procedures and literals: im-

plementations are free either to detect or to fail to detect that

two procedures or two literals are equivalent to each other, and

can decide whether or not to merge representations of equivalent

objects by using the same pointer or bit pattern to represent

both.

(eq? obj1 obj2) procedure

The eq? predicate is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those
detectable by eqv?.

The eq? and eqv? predicates are guaranteed to have
the same behavior on symbols, booleans, the empty
list, pairs, procedures, and non-empty strings and vec-
tors. The behavior of eq? on numbers and characters
is implementation-dependent, but it always returns either
true or false, and returns true only when eqv? would also
return true. The eq? predicate may also behave differently
from eqv? on empty vectors and empty strings.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ #t

(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ #t

Rationale: It is usually be possible to implement eq? much

more efficiently than eqv?, for example, as a simple pointer com-

parison instead of as some more complicated operation. One

reason is that it may not be possible to compute eqv? of two
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numbers in constant time, whereas eq? implemented as pointer

comparison will always finish in constant time. The eq? predi-

cate may be used like eqv? in applications using procedures to

implement objects with state since it obeys the same constraints

as eqv?.

(equal? obj1 obj2) procedure

The equal? predicate returns #t if and only if the (possibly
infinite) unfoldings of its arguments into regular trees are
equal as ordered trees.

The equal? predicate treats pairs and vectors as nodes
with outgoing edges, uses string=? to compare strings,
uses bytes=? to compare bytes objects (see chapter 11),
and uses eqv? to compare other nodes.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? ’#vu8(1 2 3 4 5)

(u8-list->bytes

’(1 2 3 4 5)) =⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

(let* ((x (list ’a))

(y (list ’a))

(z (list x y)))

(list (equal? z (list y x))

(equal? z (list x x))))

=⇒ (#t #t)

9.7. Procedure predicate

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

9.8. Unspecified value

(unspecified) procedure

Returns the unspecified value. (See section 9.1.)

Note: The unspecified value is not a datum value, and thus

has no external representation.

(unspecified? obj) procedure

Returns #t if obj is the unspecified value, otherwise returns
#f.

9.9. End of file object

The end of file object is returned by various I/O procedures
(see section 15.3) when they reach end of file.

(eof-object) procedure

Returns the end of file object.

Note: The end of file object is not a datum value, and thus

has no external representation.

(eof-object? obj) procedure

Returns #t if obj is the end of file object, otherwise returns
#f.

9.10. Generic arithmetic

The procedures described here implement arithmetic that
is generic over the numerical tower described in chapter 2.
Unlike the procedures exported by the libraries described in
chapter 16, the generic procedures described in this section
accept both exact and inexact numbers as arguments, per-
forming coercions and selecting the appropriate operations
as determined by the numeric subtypes of their arguments.

Chapter 2 contains a detailed description of the numerical
types of Scheme and a discussion of the concept of exact-
ness. Chapter 16 contains the mathematical definitions of
some operations that are assumed here, and describes li-
braries that define other numerical procedures.

9.10.1. Propagation of exactness and inexactness

The procedures listed below must return the correct exact
result provided all their arguments are exact:

+ - *

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt real-part imag-part

make-rectangular

The procedures listed below must return the correct ex-
act result provided all their arguments are exact, and no
divisors are zero:
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/

div mod div+mod

div0 mod0 div0+mod0

The general rule is that the generic operations return the
correct exact result when all of their arguments are exact
and the result is mathematically well-defined, but return an
inexact result when any argument is inexact. Exceptions to
this rule include sqrt, exp, log, sin, cos, tan, asin, acos,
atan, expt, make-polar, magnitude, and angle, which are
allowed (but not required) to return inexact results even
when given exact arguments, as indicated in the specifica-
tion of these procedures.

One general exception to the rule above is that an im-
plementation may return an exact result despite inexact
arguments if that exact result would be the correct result
for all possible substitutions of exact arguments for the
inexact ones.

9.10.2. Numerical operations

On exact arguments, the procedures described here be-
have consistently with the corresponding procedures of sec-
tion 16.5 whose names are prefixed by exact- or exact.
On inexact arguments, the procedures described here be-
have consistently with the corresponding procedures of
section 16.6 whose names are prefixed by inexact- or
inexact.

Numerical type predicates

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

If z is a complex number, then (real? z) is true
if and only if (zero? (imag-part z)) and (exact?
(imag-part z)) are both true.

If x is a real number, then (rational? x) is true if
and only if there exist exact integers k1 and k2 such
that (= x (/ k1 k2)) and (= (numerator x) k1) and (=
(denominator x) k2) are all true. Thus infinities and
NaNs are not rational numbers.

If q is a rational number, then (integer? q) is true if
and only if (= (denominator q) 1) is true. If q is not a
rational number, then (integer? q) is false.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? -2.5+0i) =⇒ #t

(real? -2.5) =⇒ #t

(real? #e1e10) =⇒ #t

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(rational? 2) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

(integer? 8/4) =⇒ #t

(number? +nan.0) =⇒ #t

(complex? +nan.0) =⇒ #t

(real? +nan.0) =⇒ #t

(rational? +nan.0) =⇒ #f

(complex? +inf.0) =⇒ #t

(real? -inf.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(integer? -inf.0) =⇒ #f

Note: The behavior of these type predicates on inexact num-

bers is unreliable, because any inaccuracy may affect the result.

(real-valued? obj) procedure
(rational-valued? obj) procedure
(integer-valued? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is a number and is equal in the sense of = to some
object of the named type, and otherwise they return #f.

(real-valued? +nan.0) =⇒ #f

(real-valued? -inf.0) =⇒ #t

(real-valued? 3) =⇒ #t

(real-valued? -2.5+0.0i) =⇒ #t

(real-valued? -2.5+0i) =⇒ #t

(real-valued? -2.5) =⇒ #t

(real-valued? #e1e10) =⇒ #t

(rational-valued? +nan.0) =⇒ #f

(rational-valued? -inf.0) =⇒ #f

(rational-valued? 6/10) =⇒ #t

(rational-valued? 6/10+0.0i)=⇒ #t

(rational-valued? 6/10+0i) =⇒ #t

(rational-valued? 6/3) =⇒ #t

(integer-valued? 3+0i) =⇒ #t

(integer-valued? 3+0.0i) =⇒ #t

(integer-valued? 3.0) =⇒ #t

(integer-valued? 3.0+0.0i) =⇒ #t

(integer-valued? 8/4) =⇒ #t
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Note: The behavior of these type predicates on inexact num-

bers is unreliable, because any inaccuracy may affect the result.

(exact? z) procedure
(inexact? z) procedure

These numerical predicates provide tests for the exactness
of a quantity. For any Scheme number, precisely one of
these predicates is true.

(exact? 5) =⇒ #t

(inexact? +inf.0) =⇒ #t

Generic conversions

(->inexact z) procedure
(->exact z) procedure

->inexact returns an inexact representation of z . If in-
exact numbers of the appropriate type have bounded pre-
cision, then the value returned is an inexact number that
is nearest to the argument. If an exact argument has no
reasonably close inexact equivalent, an exception with con-
dition type &implementation-violation may be raised.

->exact returns an exact representation of z . The value
returned is the exact number that is numerically closest to
the argument; in most cases, the result of this procedure
should be numerically equal to its argument. If an inexact
argument has no reasonably close exact equivalent, an ex-
ception with condition type &implementation-violation
may be raised.

These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range.

->inexact and ->exact are idempotent.

(real->flonum x) procedure

Returns a flonum representation of x .

The value returned is a flonum that is numerically closest
to the argument.

Rationale: The flonums are a subset of the inexact reals, but

may be a proper subset. The real->flonum procedure converts

an arbitrary real to the flonum type required by flonum-specific

procedures.

Note: If flonums are represented in binary floating point, then

implementations are strongly encouraged to break ties by pre-

ferring the floating point representation whose least significant

bit is zero.

(real->single x) procedure
(real->double x) procedure

Given a real number x , these procedures compute the best
IEEE-754 single or double precision approximation to x
and return that approximation as an inexact real.

Note: Both of the two conversions performed by these pro-

cedures (to IEEE-754 single or double, and then to an inexact

real) may lose precision, introduce error, or may underflow or

overflow.

Rationale: The ability to round to IEEE-754 single or double

precision is occasionally needed for control of precision or for

interoperability.

Arithmetic operations

(= z1 z2 z3 . . . ) procedure
(< x1 x2 x3 . . . ) procedure
(> x1 x2 x3 . . . ) procedure
(<= x1 x2 x3 . . . ) procedure
(>= x1 x2 x3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing #f otherwise.

(= +inf.0 +inf.0) =⇒ #t

(= -inf.0 +inf.0) =⇒ #f

(= -inf.0 -inf.0) =⇒ #t

For any real number x that is neither infinite nor NaN:

(< -inf.0 x +inf.0)) =⇒ #t

(> +inf.0 x -inf.0)) =⇒ #t

These predicates are required to be transitive.

Note: The traditional implementations of these predicates in

Lisp-like languages are not transitive.

Note: While it is possible to compare inexact numbers using
these predicates, the results may be unreliable because a small
inaccuracy may affect the result; this is especially true of = and
zero?.

When in doubt, consult a numerical analyst.

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure
(finite? x) procedure
(infinite? x) procedure
(nan? x) procedure

These numerical predicates test a number for a particu-
lar property, returning #t or #f. See note above. The
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zero? procedure tests if the number is = to zero, positive?
tests if it is greater than zero, negative? tests if it is
less than zero, odd? tests if it is odd, even? tests if it is
even, finite? tests if it is not an infinity and not a NaN,
infinite? tests if it is an infinity, nan? tests if it is a NaN.

(positive? +inf.0) =⇒ #t

(negative? -inf.0) =⇒ #t

(finite? +inf.0) =⇒ #f

(finite? 5) =⇒ #t

(finite? 5.0) =⇒ #t

(infinite? 5.0) =⇒ #f

(infinite? +inf.0) =⇒ #t

(max x1 x2 . . . ) procedure
(min x1 x2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(max 3 4) =⇒ 4 ; exact

(max 3.9 4) =⇒ 4.0 ; inexact

For any real number x :

(max +inf.0 x) =⇒ +inf.0

(min -inf.0 x) =⇒ -inf.0

Note: If any argument is inexact, then the result is also inexact

(unless the procedure can prove that the inaccuracy is not large

enough to affect the result, which is possible only in unusual

implementations). If min or max is used to compare numbers of

mixed exactness, and the numerical value of the result cannot

be represented as an inexact number without loss of accuracy,

then the procedure may raise an exception with condition type

&implementation-restriction.

(+ z1 . . . ) procedure
(* z1 . . . ) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(+ +inf.0 +inf.0) =⇒ +inf.0

(+ +inf.0 -inf.0) =⇒ +nan.0

(* 4) =⇒ 4

(*) =⇒ 1

(* 5 +inf.0) =⇒ +inf.0

(* -5 +inf.0) =⇒ -inf.0

(* +inf.0 +inf.0) =⇒ +inf.0

(* +inf.0 -inf.0) =⇒ -inf.0

(* 0 +inf.0) =⇒ 0 or +nan.0

(* 0 +nan.0) =⇒ 0 or +nan.0

For any real number x that is neither infinite nor NaN:

(+ +inf.0 x) =⇒ +inf.0

(+ -inf.0 x) =⇒ -inf.0

(+ +nan.0 x) =⇒ +nan.0

For any real number x that is neither infinite nor NaN nor
an exact 0:

(* +nan.0 x) =⇒ +nan.0

If any of these procedures are applied to mixed
non-rational real and non-real complex arguments,
they either raise an exception with condition type
&implementation-restriction or return an unspecified
number.

(- z) procedure
(- z1 z2 . . . ) procedure
(/ z) procedure
(/ z1 z2 . . . ) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(- +inf.0 +inf.0) =⇒ +nan.0

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(/ 0.0) =⇒ +inf.0

(/ 1.0 0) =⇒ +inf.0

(/ -1 0.0) =⇒ -inf.0

(/ +inf.0) =⇒ 0.0

(/ 0 0)

=⇒ &contract exception or +nan.0

(/ 0 3.5) =⇒ 0.0 ; inexact

(/ 0 0.0) =⇒ +nan.0

(/ 0.0 0) =⇒ +nan.0

(/ 0.0 0.0) =⇒ +nan.0

If any of these procedures are applied to mixed
non-rational real and non-real complex arguments,
they either raise an exception with condition type
&implementation-restriction or return an unspecified
number.

(abs x) procedure

Returns the absolute value of its argument.

(abs -7) =⇒ 7

(abs -inf.0) =⇒ +inf.0

(div+mod x1 x2) procedure
(div x1 x2) procedure
(mod x1 x2) procedure
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(div0+mod0 x1 x2) procedure
(div0 x1 x2) procedure
(mod0 x1 x2) procedure

These procedures implement number-theoretic integer divi-
sion and return the results of the corresponding mathemat-
ical operations specified in section 16.2.1. In each case, x1

must be neither infinite nor a NaN, and x2 must be nonzero;
otherwise, an exception with condition type &contract is
raised.

(div x1 x2) =⇒ x1 div x2

(mod x1 x2) =⇒ x1 mod x2

(div+mod x1 x2) =⇒ x1 div x2, x1 mod x2

; two return values

(div0 x1 x2) =⇒ x1 div0 x2

(mod0 x1 x2) =⇒ x1 mod0 x2

(div0+mod0 x1 x2)

=⇒ x1 div0 x2, x1 mod0 x2

; two return values

(gcd n1 . . . ) procedure
(lcm n1 . . . ) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

(lcm 32.0 -36) =⇒ 288.0 ; inexact

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(->inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return inexact integers on inexact argu-
ments that are not infinities or NaNs, and exact integers
on exact rational arguments. For such arguments, floor
returns the largest integer not larger than x . The ceiling
procedure returns the smallest integer not smaller than x .

The truncate procedure returns the integer closest to x
whose absolute value is not larger than the absolute value
of x . The round procedure returns the closest integer to x ,
rounding to even when x is halfway between two integers.

Rationale: The round procedure rounds to even for consistency

with the default rounding mode specified by the IEEE floating

point standard.

Note: If the argument to one of these procedures is inexact,

then the result is also inexact. If an exact value is needed, the

result should be passed to the ->exact procedure.

Although infinities and NaNs are not integers, these pro-
cedures return an infinity when given an infinity as an ar-
gument, and a NaN when given a NaN.

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0 ; inexact

(round 7/2) =⇒ 4 ; exact

(round 7) =⇒ 7

(floor +inf.0) =⇒ +inf.0

(ceiling -inf.0) =⇒ -inf.0

(round +nan.0) =⇒ +nan.0

(rationalize x1 x2) procedure

The rationalize procedure returns the simplest rational
number differing from x1 by no more than x2. A rational
number r1 is simpler than another rational number r2 if
r1 = p1/q1 and r2 = p2/q2 (in lowest terms) and |p1| ≤ |p2|
and |q1| ≤ |q2|. Thus 3/5 is simpler than 4/7. Although not
all rationals are comparable in this ordering (consider 2/7
and 3/5) any interval contains a rational number that is
simpler than every other rational number in that interval
(the simpler 2/5 lies between 2/7 and 3/5). Note that
0 = 0/1 is the simplest rational of all.

(rationalize

(->exact .3) 1/10) =⇒ 1/3 ; exact

(rationalize .3 1/10) =⇒ #i1/3 ; inexact

(rationalize +inf.0 3) =⇒ +inf.0

(rationalize +inf.0 +inf.0) =⇒ +nan.0

(rationalize 3 +inf.0) =⇒ 0.0

(exp z) procedure
(log z) procedure
(log z1 z2) procedure
(sin z) procedure
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(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan x1 x2) procedure

These procedures compute the usual transcendental func-
tions. The exp procedure computes the base-e exponential
of z . The log procedure with a single argument computes
the natural logarithm of z (not the base ten logarithm);
(log z1 z2) computes the base-z2 logarithm of z1. The
asin, acos, and atan procedures compute arcsine, arc-
cosine, and arctangent, respectively. The two-argument
variant of atan computes (angle (make-rectangular x2

x1)).

See section 16.2.2 for the underlying mathematical opera-
tions. These procedures may return inexact results even
when given exact arguments.

(exp +inf.0) =⇒ +inf.0

(exp -inf.0) =⇒ 0.0

(log +inf.0) =⇒ +inf.0

(log 0.0) =⇒ -inf.0

(log 0)

=⇒ &contract exception
(log -inf.0) =⇒ +inf.0+πi
(atan -inf.0)

=⇒ -1.5707963267948965 ; approximately

(atan +inf.0)

=⇒ 1.5707963267948965 ; approximately

(log -1.0+0.0i) =⇒ 0.0+πi
(log -1.0-0.0i) =⇒ 0.0-πi

; if -0.0 is distinguished

(sqrt z) procedure

Returns the principal square root of z . For rational z ,
the result has either positive real part, or zero real part
and non-negative imaginary part. With log defined as in
section 16.2.2, the value of (sqrt z) could be expressed as

e
log z

2 .

The sqrt procedure may return an inexact result even
when given an exact argument.

(sqrt -5)

=⇒ 0.0+2.23606797749979i ; approximately

(sqrt +inf.0) =⇒ +inf.0

(sqrt -inf.0) =⇒ +inf.0i

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1,

z1z2 = ez2 log z1

0.0z is 1.0 if z = 0.0, and 0.0 if (real-part z)
is positive. For other cases in which the first argu-
ment is zero, an exception is raised with condition type
&implementation-restriction or an unspecified number
is returned.

For an exact z1 and an exact integer z2, (expt z1 z2)
must return an exact result. For all other values of z1
and z2, (expt z1 z2) may return an inexact result, even
when both z1 and z2 are exact.

(expt 5 3) =⇒ 125

(expt 5 -3) =⇒ 1/125

(expt 5 0) =⇒ 1

(expt 0 5) =⇒ 0

(expt 0 5+.0000312i) =⇒ 0

(expt 0 -5) =⇒ unspecified
(expt 0 -5+.0000312i) =⇒ unspecified
(expt 0 0) =⇒ 1

(expt 0.0 0.0) =⇒ 1.0

(make-rectangular x1 x2) procedure
(make-polar x3 x4) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle z) procedure

Suppose x1, x2, x3, and x4 are real numbers and z is a
complex number such that

z = x1 + x2i = x3e
ix4 .

Then:
(make-rectangular x1 x2) =⇒ z
(make-rectangular x3 x4) =⇒ z
(real-part z) =⇒ x1

(imag-part z) =⇒ x2

(magnitude z) =⇒ |x3|

(angle z) =⇒ xangle

where −π ≤ x angle ≤ π with x angle = x4 + 2πn for some
integer n.

(angle -1.0) =⇒ π
(angle -1.0+0.0) =⇒ π
(angle -1.0-0.0) =⇒ -π

; if -0.0 is distinguished

Moreover, suppose x1, x2 are such that either x1 or x2 is an
infinity, then

(make-rectangular x1 x2) =⇒ z
(magnitude z) =⇒ +inf.0

The make-polar, magnitude, and angle procedures may
return inexact results even when given exact arguments.

(angle -1) =⇒ π
(angle +inf.0) =⇒ 0.0

(angle -inf.0) =⇒ π
(angle -1.0+0.0) =⇒ π
(angle -1.0-0.0) =⇒ −π

; if -0.0 is distinguished
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Numerical Input and Output

(number->string z) procedure
(number->string z radix) procedure
(number->string z radix precision) procedure

Radix must be an exact integer, either 2, 8, 10, or 16.
If omitted, radix defaults to 10. If a precision is specified,
then z must be an inexact complex number, precision must
be an exact positive integer, and radix must be 10. The
number->string procedure takes a number and a radix
and returns as a string an external representation of the
given number in the given radix such that

(let ((number number)
(radix radix))

(eqv? number

(string->number (number->string number

radix)

radix)))

is true. If no possible result makes this ex-
pression true, an exception with condition type
&implementation-restriction is raised.

If a precision is specified, then the representations of the
inexact real components of the result, unless they are infi-
nite or NaN, specify an explicit 〈mantissa width〉 p, and p
is the least p ≥ precision for which the above expression is
true.

If z is inexact, the radix is 10, and the above expression
and condition can be satisfied by a result that contains a
decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive
of exponent, trailing zeroes, and mantissa width) needed
to make the above expression and condition true [5, 8];
otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

Note: The error case can occur only when z is not a complex

number or is a complex number with a non-rational real or

imaginary part.

Rationale: If z is an inexact number represented using binary

floating point, and the radix is 10, then the above expression is

normally satisfied by a result containing a decimal point. The

unspecified case allows for infinities, NaNs, and representations

other than binary floating point.

(string->number string) procedure
(string->number string radix) procedure

Returns a number of the maximally precise representation
expressed by the given string . Radix must be an exact
integer, either 2, 8, 10, or 16. If supplied, radix is a default
radix that may be overridden by an explicit radix prefix
in string (e.g. "#o177"). If radix is not supplied, then
the default radix is 10. If string is not a syntactically

valid notation for a number, then string->number returns
#f.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

(string->number "15##") =⇒ 1500.0

(string->number "+inf.0") =⇒ +inf.0

(string->number "-inf.0") =⇒ -inf.0

(string->number "+nan.0") =⇒ +nan.0

9.11. Booleans

The standard boolean objects for true and false are written
as #t and #f. What really matters, though, are the objects
that the Scheme conditional expressions (if, cond, and,
or, do) treat as true or false. The phrase “a true value”
(or sometimes just “true”) means any object treated as
true by the conditional expressions, and the phrase “a false
value” (or “false”) means any object treated as false by the
conditional expressions.

Of all the standard Scheme values, only #f counts as false
in conditional expressions. Except for #f, all standard
Scheme values, including #t, pairs, the empty list, sym-
bols, numbers, strings, vectors, and procedures, count as
true.

Note: Programmers accustomed to other dialects of Lisp

should be aware that Scheme distinguishes both #f and the

empty list from the symbol nil.

(not obj) procedure

Returns #t if obj is false, and returns #f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

Returns #t if obj is either #t or #f and returns #f other-
wise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f
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9.12. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type (it is not
a pair); it has no elements and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field.

(pair? obj) procedure

Returns #t if obj is a pair, and otherwise returns #f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair .

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ &contract exception

(cdr pair) procedure

Returns the contents of the cdr field of pair .

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ &contract exception

(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure

These procedures are compositions of car and cdr, where
for example caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list, otherwise returns #f.

(list? obj) procedure

Returns #t if obj is a list, otherwise returns #f. By defini-
tion, all lists have finite length and are terminated by the
empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(list obj . . . ) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()
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(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . . obj) procedure

Returns a possibly improper list consisting of the elements
of the first list followed by the elements of the other lists,
with obj as the cdr of the final pair. An improper list
results if obj is not a proper list.

(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

The resulting improper list is always newly allocated, ex-
cept that it shares structure with the obj argument.

(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail l k) procedure

If k is 0, l must be the empty list or a pair. Otherwise, l
must be a chain of pairs of size at least k .

The list-tail procedure returns the subchain of pairs of
l obtained by omitting the first k elements.

(list-tail ’(a b c d) 2) =⇒ (c d)

(list-tail ’(a b c . d) 2) =⇒ (c . d)

(list-ref l k) procedure

L must be a chain of pairs of size at least k + 1.

Returns the kth element of l .

(list-ref ’(a b c d) 2) =⇒ c

(list-ref ’(a b c . d) 2) =⇒ c

(map proc list1 list2 . . . ) procedure

The lists must all have the same length. proc must be a
procedure. If the lists are non-empty, proc must take as
many arguments as there are lists and must return a single
value.

The map procedure applies proc element-wise to the ele-
ments of the lists and returns a list of the results, in order.
The dynamic order in which proc is applied to the elements
of the lists is unspecified.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

(for-each proc list1 list2 . . . ) procedure

The lists must all have the same length. proc must be a
procedure. If the lists are non-empty, proc must take as
many arguments as there are lists. The for-each proce-
dure applies proc element-wise to the elements of the lists
for its side effects, in order from the first element(s) to the
last. On the last elements of the lists, for-each tail-calls
proc. If the lists are empty, for-each returns the unspec-
ified value.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(for-each (lambda (x) x) ’(1 2 3 4))

=⇒ 4

(for-each even? ’()) =⇒ the unspecified value

9.13. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eq?, eqv? and
equal?) if and only if their names are spelled the same way.
This is exactly the property needed to represent identifiers
in programs, and so most implementations of Scheme use
them internally for that purpose. Symbols are useful for
many other applications; for instance, they may be used
the way enumerated values are used in C and Pascal.

A symbol literal is formed using quote.

Hello =⇒ Hello

’H\x65;llo =⇒ Hello

’λ =⇒ λ
’\x3BB; =⇒ λ
(string->symbol "a b") =⇒ a\x20;b

(string->symbol "a\\b") =⇒ a\x5C;b

’a\x20;b =⇒ a\x20;b

’|a b| ; syntax violation
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; (illegal character
; vertical bar)

’a\nb ; syntax violation
; (illegal use of backslash)

’a\x20 ; syntax violation
; (missing semi-colon to
; terminate \x escape)

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol->string symbol) procedure

Returns the name of symbol as a string. The returned
string may be immutable.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(string->symbol string) procedure

Returns the symbol whose name is string .

(eq? ’mISSISSIppi ’mississippi)

=⇒ #f

(string->symbol "mISSISSIppi")

=⇒ the symbol with name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

9.14. Characters

Characters are objects that represent Unicode scalar val-
ues [51].

Note: Unicode defines a standard mapping between sequences
of code points (integers in the range 0 to #x10FFFF in the lat-
est version of the standard) and human-readable “characters.”
More precisely, Unicode distinguishes between glyphs, which are

printed for humans to read, and characters, which are abstract
entities that map to glyphs (sometimes in a way that’s sensitive
to surrounding characters). Furthermore, different sequences
of code points sometimes correspond to the same character.
The relationships among code points, characters, and glyphs
are subtle and complex.

Despite this complexity, most things that a literate human

would call a “character” can be represented by a single code

point in Unicode (though there may exist code-point sequences

that represent that same character). For example, Roman let-

ters, Cyrillic letters, Hebrew consonants, and most Chinese

characters fall into this category. Thus, the “code point” ap-

proximation of “character” works well for many purposes. More

specifically, Scheme characters correspond to Unicode scalar

values, which includes all code points except those designated

as surrogates. A surrogate is a code point in the range #xD800

to #xDFFF that is used in pairs in the UTF-16 encoding to

encode a supplementary character (whose code is in the range

#x10000 to #x10FFFF).

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char->integer char) procedure
(integer->char sv) procedure

Sv must be a scalar value, i.e. a non-negative exact integer
in [0,#xD7FF] ∪ [#xE000,#x10FFFF].

Given a character, char->integer returns its scalar value
as an exact integer. For a scalar value sv , integer->char
returns its associated character.

(integer->char 32) =⇒ #\space

(char->integer (integer->char 5000))

=⇒ 5000

(integer->char #xD800) =⇒ &contract exception

(char=? char1 char2 char3 . . . ) procedure
(char<? char1 char2 char3 . . . ) procedure
(char>? char1 char2 char3 . . . ) procedure
(char<=? char1 char2 char3 . . . ) procedure
(char>=? char1 char2 char3 . . . ) procedure

These procedures impose a total ordering on the set of
characters according to their scalar values.

(char<? #\z #\ß) =⇒ #t

(char<? #\z #\Z) =⇒ #f

9.15. Strings

Strings are sequences of characters.

The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
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that is fixed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

In phrases such as “the characters of string beginning with
index start and ending with index end ,” it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string , then the entire string is referred to.

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure

Returns a newly allocated string of length k . If char is
given, then all elements of the string are initialized to char ,
otherwise the contents of the string are unspecified.

(string char . . . ) procedure

Returns a newly allocated string composed of the argu-
ments.

(string-length string) procedure

Returns the number of characters in the given string .

(string-ref string k) procedure

K must be a valid index of string . The string-ref proce-
dure returns character k of string using zero-origin index-
ing.

(string-set! string k char) procedure

k must be a valid index of string . The string-set! pro-
cedure stores char in element k of string and returns the
unspecified value.

Passing an immutable string to string-set! should
cause an exception with condition type &contract to be
raised.

(define (f) (make-string 3 #\*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ the unspecified value
(string-set! (g) 0 #\?) =⇒ unspecified

; should raise &contract exception
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ unspecified
; should raise &contract exception

(string=? string1 string2 string3 . . . ) procedure

Returns #t if the strings are the same length and contain
the same characters in the same positions, otherwise re-
turns #f.

(string=? "Strae" "Strasse")=⇒ #f

(string<? string1 string2 string3 . . . ) procedure
(string>? string1 string2 string3 . . . ) procedure
(string<=? string1 string2 string3 . . . ) procedure
(string>=? string1 string2 string3 . . . ) procedure

These procedures are the lexicographic extensions to
strings of the corresponding orderings on characters. For
example, string<? is the lexicographic ordering on strings
induced by the ordering char<? on characters. If two
strings differ in length but are the same up to the length
of the shorter string, the shorter string is considered to be
lexicographically less than the longer string.

(string<? "z" "ß") =⇒ #t

(string<? "z" "zz") =⇒ #t

(string<? "z" "Z") =⇒ #f

(substring string start end) procedure

String must be a string, and start and end must be exact
integers satisfying

0 ≤ start ≤ end ≤ (string-length string).

The substring procedure returns a newly allocated string
formed from the characters of string beginning with index
start (inclusive) and ending with index end (exclusive).

(string-append string . . . ) procedure

Returns a newly allocated string whose characters form the
concatenation of the given strings.

(string->list string) procedure
(list->string list) procedure

List must be a list of characters. The string->list pro-
cedure returns a newly allocated list of the characters that
make up the given string. The list->string procedure re-
turns a newly allocated string formed from the characters
in list . The string->list and list->string procedures
are inverses so far as equal? is concerned.

(string-copy string) procedure

Returns a newly allocated copy of the given string .

(string-fill! string char) procedure

Stores char in every element of the given string and returns
the unspecified value.
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9.16. Vectors

Vectors are heterogenous structures whose elements are in-
dexed by integers. A vector typically occupies less space
than a list of the same length, and the average time re-
quired to access a randomly chosen element is typically
less for the vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created. The valid indexes of a
vector are the exact non-negative integers less than the
length of the vector. The first element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.

Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna")

=⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector, otherwise returns #f.

(make-vector k) procedure
(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj . . . ) procedure

Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact in-
teger.

(vector-ref vector k) procedure

K must be a valid index of vector . The vector-ref pro-
cedure returns the contents of element k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(let ((i (round (* 2 (acos -1)))))

(if (inexact? i)

(inexact->exact i)

i)))

=⇒ 13

(vector-set! vector k obj) procedure

K must be a valid index of vector . The vector-set! pro-
cedure stores obj in element k of vector . The value re-
turned by vector-set! is the unspecified value.

Passing an immutable vector to vector-set! should cause
an exception with condition type &contract to be raised.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ unspecified
; constant vector

; may raise &contract exception

(vector->list vector) procedure
(list->vector list) procedure

The vector->list procedure returns a newly allocated list
of the objects contained in the elements of vector . The
list->vector procedure returns a newly created vector
initialized to the elements of the list list .

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector-fill! vector fill) procedure

Stores fill in every element of vector and returns the un-
specified value.

9.17. Errors and violations

(error who message irritant1 . . . ) procedure
(contract-violation who message irritant1 . . . )

procedure

Who must be a string or a symbol or #f. message must be
a string. The irritants are arbitrary objects.

These procedures raise an exception. Calling the error
procedure means that an error has occurred, typically
caused by something that has gone wrong in the inter-
action of the program with the external world or the user.
Calling the contract-violation procedure means that an
invalid call to a procedure was made, either passing an in-
valid number of arguments, or passing an argument that it
is not specified to handle.

The who argument should describe the procedure or oper-
ation that detected the exception. The message argument
should describe the exceptional situation. The irritants
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should be the arguments to the operation that detected
the operation.

The condition object provided with the exception (see
chapter 14) has the following condition types:

• If who is not #f, the condition has condition type &who,
with who as the value of the who field. In that case,
who should identify the procedure or entity that de-
tected the exception. If it is #f, the condition does
not have condition type &who.

• The condition has condition type &message, with
message as the value of the message field.

• The condition has condition type &irritants, and the
irritants field has as its value a list of the irritants.

Moreover, the condition created by error has con-
dition type &error, and the condition created by
contract-violation has condition type &contract.

(define (fac n)

(if (not (integer-valued? n))

(contract-violation

’fac "non-integral argument" n))

(if (negative? n)

(contract-violation

’fac "negative argument" n))

(letrec

((loop (lambda (n r)

(if (zero? n)

r

(loop (- n 1) (* r n))))))

(loop n 1)))

(fac 5) =⇒ 120

(fac 4.5) =⇒ &contract exception
(fac -3) =⇒ &contract exception

Rationale: The procedures encode a common pattern of raising

exceptions.

9.18. Control features

This chapter describes various primitive procedures which
control the flow of program execution in special ways.

(apply proc arg1 . . . args) procedure

Proc must be a procedure and args must be a list. Calls
proc with the elements of the list (append (list arg1

. . . ) args) as the actual arguments.

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

Proc must be a procedure of one argument. The procedure
call-with-current-continuation (which is the same as
the procedure call/cc) packages up the current continua-
tion (see the rationale below) as an “escape procedure” and
passes it as an argument to proc. The escape procedure is
a Scheme procedure that, if it is later called, will abandon
whatever continuation is in effect at that later time and
will instead use the continuation that was in effect when
the escape procedure was created. Calling the escape pro-
cedure may cause the invocation of before and after thunks
installed using dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation of the original call to
call-with-current-continuation.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It may be
stored in variables or data structures and may be called as
many times as desired.

The following examples show only the most common ways
in which call-with-current-continuation is used. If
all real uses were as simple as these examples, there
would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t
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Rationale:

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is extremely useful
for implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation. Most
of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply
it by the value stored in a local variable, add seven, and store
the result in some other variable. Normally these ubiquitous
continuations are hidden behind the scenes and programmers
do not think much about them. On rare occasions, however,
a programmer may need to deal with continuations explic-
itly. The call-with-current-continuation procedure allows
Scheme programmers to do that by creating a procedure that
acts just like the current continuation.

Most programming languages incorporate one or more special-

purpose escape constructs with names like exit, return, or

even goto. In 1965, however, Peter Landin [33] invented a

general purpose escape operator called the J-operator. John

Reynolds [43] described a simpler but equally powerful con-

struct in 1972. The catch special form described by Sussman

and Steele in the 1975 report on Scheme is exactly the same as

Reynolds’s construct, though its name came from a less general

construct in MacLisp. Several Scheme implementors noticed

that the full power of the catch construct could be provided by

a procedure instead of by a special syntactic construct, and the

name call-with-current-continuation was coined in 1982.

This name is descriptive, but opinions differ on the merits of

such a long name, and some people use the name call/cc in-

stead.

(values obj . . .) procedure
Delivers all of its arguments to its continuation. The
values procedure might be defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

The continuations of all non-final expressions within a se-
quence of expressions in lambda, begin, let, let*, letrec,
letrec*, let-values, let*-values, case, cond, and do
forms as well as the continuations of the before and after
arguments to dynamic-wind take an arbitrary number of
values.

Except for these and the continuations created by the
call-with-values procedure, all other continuations take
exactly one value. The effect of passing an inappropri-
ate number of values to a continuation not created by
call-with-values is undefined.

(call-with-values producer consumer) procedure

Calls its producer argument with no values and a contin-
uation that, when passed some values, calls the consumer

procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call
to call-with-values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

If an inappropriate number of values is passed to a contin-
uation created by call-with-values, an exception with
condition type &contract is raised.

(dynamic-wind before thunk after) procedure

Before, thunk , and after must be procedures accepting zero
arguments and returning any number of values.

In the absense of any calls to escape procedures (see
call-with-current-continuation), dynamic-wind be-
haves as if defined as follows.

(define dynamic-wind

(lambda (before thunk after)

(before)

(call-with-values

(lambda () (thunk))

(lambda vals

(after)

(apply values vals)))))

That is, before is called without arguments. If before re-
turns, thunk is called without arguments. If thunk returns,
after is called without arguments. Finally, if after returns,
the values resulting from the call to thunk are returned.

Invoking an escape procedure to transfer control into or out
of the dynamic extent of the call to thunk can cause addi-
tional calls to before and after . When an escape procedure
created outside the dynamic extent of the call to thunk is
invoked from within the dynamic extent, after is called just
after control leaves the dynamic extent. Similarly, when an
escape procedure created within the dynamic extent of the
call to thunk is invoked from outside the dynamic extent,
before is called just before control reenters the dynamic
extent. In the latter case, if thunk returns, after is called
even if thunk has returned previously. While the calls to
before and after are not considered to be within the dy-
namic extent of the call to thunk , calls to the before and
after thunks of any other calls to dynamic-wind that occur
within the dynamic extent of the call to thunk are consid-
ered to be within the dynamic extent of the call to thunk .

More precisely, an escape procedure used to transfer con-
trol out of the dynamic extent of a set of zero or more
active dynamic-wind thunk calls x . . . and transfer con-
trol into the dynamic extent of a set of zero or more active
dynamic-wind thunk calls y . . . proceeds as follows. It
leaves the dynamic extent of the most recent x and calls
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without arguments the corresponding after thunk. If the
after thunk returns, the escape procedure proceeds to the
next most recent x, and so on. Once each x has been han-
dled in this manner, the escape procedure calls without
arguments the before thunk corresponding to the least re-
cent y. If the before thunk returns, the escape procedure
reenters the dynamic extent of the least recent y and pro-
ceeds with the next least recent y, and so on. Once each y
has been handled in this manner, control is transfered to
the continuation packaged in the escape procedure.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2)))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 1

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

values

(lambda ()

(dynamic-wind

values

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2))

(k))))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 7

9.19. Iteration

(let 〈variable〉 〈bindings〉 〈body〉) syntax

“Named let” is a variant on the syntax of let which pro-
vides a more general looping construct than do and may
also be used to express recursions. It has the same syn-
tax and semantics as ordinary let except that 〈variable〉
is bound within 〈body〉 to a procedure whose formal argu-
ments are the bound variables and whose body is 〈body〉.
Thus the execution of 〈body〉 may be repeated by invoking
the procedure named by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

The let keyword could be defined in terms of lambda and
letrec using syntax-rules (see section 9.21) as follows:

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

body1 body2 ...)))

tag)

val ...))))

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . . )

(〈test〉 〈expression〉 . . . )
〈expressionx〉 . . . )

Syntax: The 〈init〉s, 〈step〉s, and 〈test〉s must be expres-
sions. The 〈variable〉s must be pairwise distinct variables.

Semantics: The do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on
each iteration. When a termination condition is met, the
loop exits after evaluating the 〈expression〉s.
A do expression are evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.
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Each iteration begins by evaluating 〈test〉; if the result is
false (see section 9.11), then the 〈command〉 expressions are
evaluated in order for effect, the 〈step〉 expressions are eval-
uated in some unspecified order, the 〈variable〉s are bound
to fresh locations, the results of the 〈step〉s are stored in the
bindings of the 〈variable〉s, and the next iteration begins.
If 〈test〉 evaluates to a true value, then the 〈expression〉s
are evaluated from left to right and the value(s) of the
last 〈expression〉 is(are) returned. If no 〈expression〉s are
present, then the value of the do expression is the unspec-
ified value.
The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s. It is a syntax
violation for a 〈variable〉 to appear more than once in the
list of do variables.
A 〈step〉 may be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

The following definition of do uses a trick to expand the
variable clauses.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

(unspecified)

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

sectionQuasiquotation

(quasiquote 〈qq template〉) syntax
“Backquote” or “quasiquote” expressions are useful for
constructing a list or vector structure when some but

not all of the desired structure is known in advance. If
no unquote or unquote-splicing forms appear within
the 〈qq template〉, the result of evaluating (quasiquote
〈qq template〉) is equivalent to the result of evaluating
(quote 〈qq template〉).

If an (unquote 〈expression〉 . . . ) form appears inside a
〈qq template〉, however, the 〈expression〉s are evaluated
(“unquoted”) and their results are inserted into the struc-
ture instead of the unquote form.

If an (unquote-splicing 〈expression〉 . . . ) form appears
inside a 〈qq template〉, then the 〈expression〉s must evalu-
ate to lists; the opening and closing parentheses of the list
are then “stripped away” and the elements of the lists are
inserted in place of the unquote-splicing form.

unquote-splicing and multi-operand unquote forms
must appear only within a list or vector 〈qq template〉.

As noted in section 3.3.5, (quasiquote 〈qq template〉)
may be abbreviated `〈qq template〉, (unquote
〈expression〉) may be abbreviated ,〈expression〉, and
(unquote-splicing 〈expression〉) may be abbreviated
,@〈expression〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

`(( foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

(let ((name ’foo))

`((unquote name name name)))

=⇒ (foo foo foo)

(let ((name ’(foo)))

`((unquote-splicing name name name)))

=⇒ (foo foo foo)

(let ((q ’((append x y) (sqrt 9))))

``(foo ,,@q))

=⇒ `(foo (unquote (append x y) (sqrt 9)))

(let ((x ’(2 3))

(y ’(4 5)))

`(foo (unquote (append x y) (sqrt 9))))

=⇒ (foo (2 3 4 5) 3)

Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same nest-
ing level as the outermost quasiquote. The nesting level
increases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)
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It is a syntax violation if any of the identifiers quasiquote,
unquote, or unquote-splicing appear in positions within
a 〈qq template〉 otherwise than as described above.

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
infinite number of production rules. Imagine a copy of the
following rules for D = 1, 2, 3, . . .. D keeps track of the
nesting depth.

〈quasiquotation〉 −→ 〈quasiquotation 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈simple datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→

(unquote-splicing 〈qq template D − 1〉*)
| (unquote 〈qq template D − 1〉*)

In 〈quasiquotation〉s, a 〈list qq template D〉 can some-
times be confused with either an 〈unquotation D〉 or
a 〈splicing unquotation D〉. The interpretation as an
〈unquotation〉 or 〈splicing unquotation D〉 takes prece-
dence.

9.20. Binding constructs for syntactic key-
words

The let-syntax and letrec-syntax forms are analo-
gous to let and letrec but bind keywords rather than
variables. Like begin, a let-syntax or letrec-syntax
form may appear in a definition context, in which case
it is treated as a definition, and the forms in the body
of the form must also be definitions. A let-syntax or
letrec-syntax form may also appear in an expression con-
text, in which case the forms within their bodies must be
expressions.

(let-syntax 〈bindings〉 〈form〉 . . . ) syntax

Syntax: 〈Bindings〉 must have the form

((〈keyword〉 〈transformer spec〉) . . . )

Each 〈keyword〉 is an identifier, each 〈transformer spec〉 is
either an instance of syntax-rules or an expression that
evaluates to a transformer (see chapter 17). It is a syntax
violation for 〈keyword〉 to appear more than once in the

list of keywords being bound. The 〈form〉s are arbitrary
forms.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax form with macros whose keywords are
the 〈keyword〉s, bound to the specified transformers. Each
binding of a 〈keyword〉 has the 〈form〉s as its region.

The 〈form〉s of a let-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin, see section 9.5.7. Thus, internal definitions
in the result of expanding the 〈form〉s have the same region
as any definition appearing in place of the let-syntax form
would have.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(let ()

(let-syntax

((def (syntax-rules ()

((def stuff ...) (define stuff ...)))))

(def foo 42))

foo) =⇒ 42

(let ()

(let-syntax ())

5) =⇒ 5

(letrec-syntax 〈bindings〉 〈form〉 . . . ) syntax

Syntax: Same as for let-syntax.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the letrec-syntax form with macros whose keywords
are the 〈keyword〉s, bound to the specified transformers.
Each binding of a 〈keyword〉 has the 〈bindings〉 as well
as the 〈form〉s within its region, so the transformers can
transcribe forms into uses of the macros introduced by the
letrec-syntax form.

The 〈form〉s of a letrec-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin, see section 9.5.7. Thus, internal definitions
in the result of expanding the 〈form〉s have the same region
as any definition appearing in place of the letrec-syntax
form would have.
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(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

The following example highlights how let-syntax and
letrec-syntax differ.

(let ((f (lambda (x) (+ x 1))))

(let-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 2)

(let ((f (lambda (x) (+ x 1))))

(letrec-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 1)

The two expressions are identical except that
the let-syntax form in the first expression is a
letrec-syntax form in the second. In the first ex-
pression, the f occurring in g refers to the let-bound
variable f, whereas in the second it refers to the keyword f
whose binding is established by the letrec-syntax form.

9.21. syntax-rules

A 〈transformer spec〉 in a syntax definition, let-syntax,
or letrec-syntax can be a syntax-rules form:

(syntax-rules (〈literal〉 ...) 〈syntax rule〉 ...)
syntax

Syntax: Each 〈literal〉 must be an identifier. Each
〈syntax rule〉 must take one of the the following forms:

(〈srpattern〉 〈template〉)
(〈srpattern〉 〈fender〉 〈template〉)

An 〈srpattern〉 is a restricted form of 〈pattern〉, namely,
a nonempty 〈pattern〉 in one of four parenthesized forms
below whose first subform is an identifier or an underscore
. A 〈pattern〉 is an identifier, constant, or one of the fol-
lowing.

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 ... . 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ... . 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 ... . 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

〈Fender〉, if present, is an expression. The 〈fender〉 is gen-
erally useful only if the (r6rs syntax-case) library has
been imported; see chapter 17.

Semantics: An instance of syntax-rules produces a new
macro transformer by specifying a sequence of hygienic
rewrite rules. A use of a macro whose keyword is associated
with a transformer specified by syntax-rules is matched
against the patterns contained in the 〈syntax rule〉s, be-
ginning with the leftmost 〈syntax rule〉. When a match is
found, the macro use is transcribed hygienically according
to the template. It is a syntax violation when no match is
found.

An identifier appearing within a 〈pattern〉 may be an un-
derscore ( ), a literal identifier listed in the list of literals
(〈literal〉 ...), or an ellipsis ( ... ). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 ...).

While the first subform of 〈srpattern〉 may be an identifier,
the identifier is not involved in the matching and is not
considered a pattern variable or literal identifier.

Rationale: The identifier is most often the keyword used to

identify the macro. The scope of the keyword is determined

by the binding form or syntax definition that binds it to the

associated macro transformer. If the keyword were a pattern

variable or literal identifier, then the template that follows

the pattern would be within its scope regardless of whether

the keyword were bound by let-syntax, letrec-syntax, or

define-syntax.

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax vio-
lation if the same pattern variable may appears more than
once in a 〈pattern〉.
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Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.
A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two
identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ( ).

• P is a pattern variable.

• P is a literal identifier and F is an identifier such that
both P and F would refer to the same binding if both
were to appear in the output of the macro outside of
any bindings inserted into the output of the macro.
(If neither of two like-named identifiers refers to any
binding, i.e., both are undefined, they are considered
to refer to the same binding.)

• P is of the form (P1 ... Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 ... Pn . Px) and F is a list
or improper list of n or more elements whose first n
elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn), where 〈ellipsis〉 is the identifier ... and F is a
proper list of n elements whose first k elements match
P1 through Pk, whose next m−k elements each match
Pe, and whose remaining n−m elements match Pm+1

through Pn.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n − m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 ... Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 ... Pk Pe 〈ellipsis〉 Pm+1

... Pn), where 〈ellipsis〉 is the identifier ... and F is
a vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

When a macro use is transcribed according to the template
of the matching 〈syntax rule〉, pattern variables that occur
in the template are replaced by the subforms they match
in the input.

Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur
in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a
syntax violation if the consraints of this paragraph are not
met.

A template of the form (〈ellipsis〉 〈template〉) is identi-
cal to 〈template〉, except that ellipses within the template
have no special meaning. That is, any ellipses contained
within 〈template〉 are treated as ordinary identifiers. In
particular, the template (... ...) produces a single el-
lipsis, .... This allows syntactic abstractions to expand
into forms containing ellipses.

As an example, if let and cond are defined as in sec-
tion 9.5.6 and appendix B then they are hygienic (as re-
quired) and the following is not an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the top-level
identifier =>, which the macro transformer treats as a syn-
tactic keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))

instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in a contract violation.
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9.22. Declarations

A declaration affects a range of code and indicates that the
code within that range should be compiled or executed to
have certain qualities. A declaration appears at the be-
ginning of a 〈body〉 (see section 9.4), at the beginning of
a 〈library body〉 (see chapter 6), or within a 〈script body〉
(see chapter 7), and its range is the body in which it ap-
pears, possibly but not necessarily including code inserted
into the range by macro expansion.

A 〈declaration〉 is always a declare form.

(declare 〈declare spec〉*) syntax

A 〈declare spec〉 has one of the following forms:

• (〈quality〉 〈priority〉)
〈Quality〉 has to be one of safe, fast, small, and
debug. 〈priority〉 has to be one of 0, 1, 2, and 3.

This specifies that the code in the range of the declara-
tion should have the indicated quality at the indicated
priority, where priority 3 is the highest priority. Pri-
ority 0 means the quality is not a priority at all.

• 〈quality〉
This is a synonym for (〈quality〉 3).

• unsafe

This is a synonym for (safe 0).

For safe, the default priority must be 1 or higher. When
the priority for safe is 1 or higher, implementations must
raise all required exceptions and let them be handled by
the exception mechanism (see chapter 14).

Beyond that, the detailed interpretation of declarations
will vary in different implementations. In particular, imple-
mentations are free to ignore declarations, and may observe
some declarations while ignoring others.

The following descriptions of each quality may provide
some guidance for programmers and implementors.

safe This quality’s priority influences the degree of
checking for exceptional situations, and the raising and
handling of exceptions in response to those situations. The
higher the priority, the more likely an exception is raised.

At priority 0, an implementation is allowed to ignore any
requirements for raising an exception with condition type
&violation (or one of its subtypes). In situations for
which this report allows or requires the implementation
to raise an exception with condition type &violation, the
implementation may ignore the situation and continue the
computation with an incorrect result, may terminate the

computation in an unpleasant fashion, or may destroy the
invariants of run-time data structures in ways that cause
unexpected and mysterious misbehavior even in code that
comes within the scope of a safe declaration. All bets are
off.

At priority 1 and higher, an implementation must raise all
exceptions required by this report, handle those exceptions
using the exception mechanism described in chapter 14,
and use the default exception handlers described in that
chapter. See also section 4.4.

At higher priorities, implementations may be more likely
to raise exceptions that are allowed but not required by
this report.

Most implementations are able to recognize some viola-
tions when parsing, expanding macros, or compiling a def-
inition or expression whose evaluation has not yet com-
menced in the usual sense. Implementations are allowed
to use nonstandard exception handlers at those times, and
are encouraged to raise &syntax exceptions for violations
detected at those times, even if the definition or expression
that contains the violation will never be executed. Imple-
mentations are also allowed to raise a &warning exception
at those times if they determine that some subexpression
would inevitably raise some kind of &violation exception
were it ever to be evaluated.

fast This quality’s priority influences the speed of the
code it governs. At high priorities, the code is likely to
run faster, but that improvement is constrained by other
qualities and may come at the expense of the small and
debug qualities.

small This quality’s priority influences the amount of
computer memory needed to represent and to run the code.
At high priorities, the code is likely to occupy less memory
and to require less memory during evaluation.

debug This quality’s priority influences the programmer’s
ability to debug the code. At high priorities, the program-
mer is more likely to understand the correspondence be-
tween the original source code and information displayed
by debugging tools. At low priorities, some debugging tools
may not be usable.

9.23. Tail calls and tail contexts

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.
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• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in a
tail context.

(lambda 〈formals〉
〈declaration〉* 〈definition〉*
〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from rules
for the syntax of the forms described in this chap-
ter by replacing some occurrences of 〈expression〉 with
〈tail expression〉. Only those rules that contain tail
contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)
(let* (〈binding spec〉*) 〈tail body〉)
(letrec* (〈binding spec〉*) 〈tail body〉)
(letrec (〈binding spec〉*) 〈tail body〉)
(let-values (〈mv binding spec〉*) 〈tail body〉)
(let*-values (〈mv binding spec〉*) 〈tail body〉)

(let-syntax (〈syntax spec〉*) 〈tail body〉)
(letrec-syntax (〈syntax spec〉*) 〈tail body〉)

(begin 〈tail sequence〉)

(do (〈iteration spec〉*)
(〈test〉 〈tail sequence〉)

〈expression〉*)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

〈tail body〉 −→ 〈declaration〉* 〈definition〉*

〈tail sequence〉
〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond expression is in a tail context, and has a
clause of the form (〈expression1〉 => 〈expression2〉)
then the (implied) call to the procedure that results
from the evaluation of 〈expression2〉 is in a tail context.
〈expression2〉 itself is not in a tail context.

Certain built-in procedures are also required to perform
tail calls. The first argument passed to apply and to
call-with-current-continuation, and the second argu-
ment passed to call-with-values, must be called via a
tail call.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recog-

nize that some non-tail calls, such as the call to h above, can be

evaluated as though they were tail calls. In the example above,

the let expression could be compiled as a tail call to h. (The

possibility of h returning an unexpected number of values can

be ignored, because in that case the effect of the let is explicitly

unspecified and implementation-dependent.)
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DESCRIPTION OF THE STANDARD LIBRARIES

10. Unicode

The procedures exported by the (r6rs unicode) library
provide access to some aspects of the Unicode semantics
for characters and strings: category information, case-
independent comparisons, case mappings, and normaliza-
tion [51].

Some of the procedures that operate on characters or
strings ignore the difference between upper case and lower
case. The procedures that ignore case have “-ci” (for “case
insensitive”) embedded in their names.

10.1. Characters

(char-upcase char) procedure
(char-downcase char) procedure
(char-titlecase char) procedure
(char-foldcase char) procedure

These procedures take a character argument and return a
character result. If the argument is an upper case or title
case character, and if there is a single character that is its
lower case form, then char-downcase returns that charac-
ter. If the argument is a lower case or title case character,
and there is a single character that is its upper case form,
then char-upcase returns that character. If the argument
is a lower case or upper case character, and there is a single
character that is its title case form, then char-titlecase
returns that character. Finally, if the character has a case-
folded character, then char-foldcase returns that charac-
ter. Otherwise the character returned is the same as the ar-
gument. For Turkic characters İ (#\x130) and ı (#\x131),
char-foldcase behaves as the identity function; otherwise
char-foldcase is the same as char-downcase composed
with char-upcase.

(char-upcase #\i) =⇒ #\I

(char-downcase #\i) =⇒ #\i

(char-titlecase #\i) =⇒ #\I

(char-foldcase #\i) =⇒ #\i

(char-upcase #\ß) =⇒ #\ß

(char-downcase #\ß) =⇒ #\ß

(char-titlecase #\ß) =⇒ #\ß

(char-foldcase #\ß) =⇒ #\ß

(char-upcase #\Σ) =⇒ #\Σ
(char-downcase #\Σ) =⇒ #\σ
(char-titlecase #\Σ) =⇒ #\Σ
(char-foldcase #\Σ) =⇒ #\σ

(char-upcase #\ς) =⇒ #\Σ
(char-downcase #\ς) =⇒ #\ς
(char-titlecase #\ς) =⇒ #\Σ

(char-foldcase #\ς) =⇒ #\σ

Note: These procedures are consistent with Unicode’s locale-
independent mappings from scalar values to scalar values
for upcase, downcase, titlecase, and case-folding operations.
These mappings can be extracted from UnicodeData.txt and
CaseFolding.txt from the Unicode Consortium, ignoring Tur-
kic mappings in the latter.

Note that these character-based procedures are an incomplete

approximation to case conversion, even ignoring the user’s

locale. In general, case mappings require the context of a

string, both in arguments and in result. The string-upcase,

string-downcase, string-titlecase, and string-foldcase

procedures (section 10.2) perform more general case conversion.

(char-ci=? char1 char2 char3 . . . ) procedure
(char-ci<? char1 char2 char3 . . . ) procedure
(char-ci>? char1 char2 char3 . . . ) procedure
(char-ci<=? char1 char2 char3 . . . ) procedure
(char-ci>=? char1 char2 char3 . . . ) procedure

These procedures are similar to char=? et cetera, but op-
erate on the case-folded versions of the characters.

(char-ci<? #\z #\Z) =⇒ #f

(char-ci=? #\z #\Z) =⇒ #t

(char-ci=? #\ς #\σ) =⇒ #t

(char-alphabetic? char) procedure
(char-numeric? char) procedure
(char-whitespace? char) procedure
(char-upper-case? letter) procedure
(char-lower-case? letter) procedure
(char-title-case? letter) procedure

These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper case, lower case, or title
case characters, respectively; otherwise they return #f.

A character is alphabetic if it is a Unicode letter, i.e. if
it is in one of the categories Lu, Ll, Lt, Lm, and Lo. A
character is numeric if it is in categeory Nd. A character
is whitespace if it is in one of the space, line, or para-
graph separator categories (Zs, Zl or Zp), or if is Unicode
9 (Horizontal tabulation), Unicode 10 (Line feed), Unicode
11 (Vertical tabulation), Unicode 12 (Form feed), or Uni-
code 13 (Carriage return). A character is upper case if it
has the Unicode “Uppercase” property, lower case if it has
the “Lowercase” property, and title case if it is in the Lt
general category.

(char-alphabetic? #\a) =⇒ #t

(char-numeric? #\1) =⇒ #t
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(char-whitespace? #\space) =⇒ #t

(char-whitespace? #\x00A0) =⇒ #t

(char-upper-case? #\Σ) =⇒ #t

(char-lower-case? #\σ) =⇒ #t

(char-lower-case? #\x00AA) =⇒ #t

(char-title-case? #\I) =⇒ #f

(char-title-case? #\x01C5) =⇒ #t

(char-general-category char) procedure

Returns a symbol representing the Unicode general cate-
gory of char , one of Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl,
No, Ps, Pe, Pi, Pf, Pd, Pc, Po, Sc, Sm, Sk, So, Zs, Zp, Zl,
Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a) =⇒ Ll

(char-general-category #\space)

=⇒ Zs

(char-general-category #\x10FFFF)

=⇒ Cn

10.2. Strings

(string-upcase string) procedure
(string-downcase string) procedure
(string-titlecase string) procedure
(string-foldcase string) procedure

These procedures take a string argument and return a
string result. They are defined in terms of Unicode’s locale-
independent case mappings from scalar-value sequences to
scalar-value sequences. In particular, the length of the re-
sult string can be different from the length of the input
string.

The string-upcase procedure converts a string to upper
case; string-downcase converts a string to lowercase. The
string-foldcase procedure converts the string to its case-
folded counterpart, using the full case-folding mapping, but
without the special mappings for Turkic languages. The
string-titlecase procedure converts the first character
to title case in each contiguous sequence of cased characters
within string , and it downcases all other cased characters;
for the purposes of detecting cased-character sequences,
case-ignorable characters are ignored (i.e., they do not in-
terrupt the sequence).

(string-upcase "Hi") =⇒ "HI"

(string-downcase "Hi") =⇒ "hi"

(string-foldcase "Hi") =⇒ "hi"

(string-upcase "Straße") =⇒ "STRASSE"

(string-downcase "Straße") =⇒ "straße"

(string-foldcase "Straße") =⇒ "strasse"

(string-downcase "STRASSE") =⇒ "strasse"

(string-downcase "Σ") =⇒ "σ"

; Chi Alpha Omicron Sigma:
(string-upcase "XAOΣ") =⇒ "XAOΣ"

(string-downcase "XAOΣ") =⇒ "χαoς"
(string-downcase "XAOΣΣ") =⇒ "χαoσς"
(string-downcase "XAOΣ Σ")=⇒ "χαoς σ"
(string-foldcase "XAOΣΣ") =⇒ "χαoσσ"
(string-upcase "χαoς") =⇒ "XAOΣ"

(string-upcase "χαoσ") =⇒ "XAOΣ"

(string-titlecase "kNock KNoCK")

=⇒ "Knock Knock"

(string-titlecase "who’s there?")

=⇒ "Who’s There?"

(string-titlecase "r6rs") =⇒ "R6Rs"

(string-titlecase "R6RS") =⇒ "R6Rs"

Note: The case mappings needed for implementing
these procedures can be extracted from UnicodeData.txt,
SpecialCasing.txt, WordBreakProprty.txt (the “MidLet-
ter” property partly defines case-ignorable characters), and
CaseFolding.txt from the Unicode Consortium.

Since these procedures are locale-independent, they may not be

completely appropriate for some locales.

(string-ci=? string1 string2 string3 . . . ) procedure
(string-ci<? string1 string2 string3 . . . ) procedure
(string-ci>? string1 string2 string3 . . . ) procedure
(string-ci<=? string1 string2 string3 . . . ) procedure
(string-ci>=? string1 string2 string3 . . . ) procedure

These procedures are similar to string=? et cetera, but
operate on the case-folded versions of the strings.

(string-ci<? "z" "Z") =⇒ #f

(string-ci=? "z" "Z") =⇒ #t

(string-ci=? "Straße" "Strasse")

=⇒ #t

(string-ci=? "Straße" "STRASSE")

=⇒ #t

(string-ci=? "XAOΣ" "χαoσ")
=⇒ #t

(string-normalize-nfd string) procedure
(string-normalize-nfkd string) procedure
(string-normalize-nfc string) procedure
(string-normalize-nfkc string) procedure

These procedures take a string argument and return a
string result, which is the input string normalized to Uni-
code normalization form D, KD, C, or KC, respectively.

(string-normalize-nfd "\xE9;")

=⇒ "\x65;\x301;"

(string-normalize-nfc "\xE9;")
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=⇒ "\xE9;"

(string-normalize-nfd "\x65;\x301;")

=⇒ "\x65;\x301;"

(string-normalize-nfc "\x65;\x301;")

=⇒ "\xE9;"

11. Bytes objects

Many applications must deal with blocks of binary data
by accessing them in various ways—extracting signed or
unsigned numbers of various sizes. Therefore, the (r6rs
bytes) library provides a single type for blocks of binary
data with multiple ways to access that data. It deals only
with integers in various sizes with specified endianness, be-
cause these are the most frequent applications.

Bytes objects are objects of a disjoint type. Conceptually,
a bytes object represents a sequence of 8-bit bytes. The
description of bytes objects uses the term byte for an exact
integer in the interval {−128, . . . , 127} and the term octet
for an exact integer in the interval {0, . . . , 255}. A byte
corresponds to its two’s complement representation as an
octet.

The length of a bytes object is the number of bytes it con-
tains. This number is fixed. A valid index into a bytes
object is an exact, non-negative integer. The first byte of
a bytes object has index 0; the last byte has an index one
less than the length of the bytes object.

Generally, the access procedures come in different flavors
according to the size of the represented integer, and the
endianness of the representation. The procedures also dis-
tinguish signed and unsigned representations. The signed
representations all use two’s complement.

Like list and vector literals, literals representing bytes ob-
jects must be quoted:

’#vu8(12 23 123) =⇒ #vu8(12 23 123)

(endianness big) syntax
(endianness little) syntax

(endianness big) and (endianness little) evaluate to
the symbols big and little, respectively. These symbols
represent an endianness, and whenever one of the proce-
dures operating on bytes objects accepts an endianness as
an argument, that argument must be one of these symbols.
It is a syntax violation for the operand to endianness to
be anything other than big or little.

(native-endianness) procedure

Returns the implementation’s preferred endianness (usu-
ally that of the underlying machine architecture), either
big or little.

(bytes? obj) procedure

Returns #t if obj is a bytes object, otherwise returns #f.

(make-bytes k) procedure
(make-bytes k fill) procedure

Returns a newly allocated bytes object of k bytes.

If the fill argument is missing, the initial contents of the
returned bytes object are unspecified.

If the fill argument is present, it must be an exact integer in
the interval {−128, . . . 255} that specifies the initial value
for the bytes of the bytes object: If fill is positive, it is
interpreted as an octet; if it is negative, it is interpreted as
a byte.

(bytes-length bytes) procedure

Returns, as an exact integer, the number of bytes in bytes.

(bytes-u8-ref bytes k) procedure
(bytes-s8-ref bytes k) procedure

K must be a valid index of bytes.

The bytes-u8-ref procedure returns the byte at index k
of bytes, as an octet.

The bytes-s8-ref procedure returns the byte at index k
of bytes, as a (signed) byte.

(let ((b1 (make-bytes 16 -127))

(b2 (make-bytes 16 255)))

(list

(bytes-s8-ref b1 0)

(bytes-u8-ref b1 0)

(bytes-s8-ref b2 0)

(bytes-u8-ref b2 0))) =⇒ (-127 129 -1 255)

(bytes-u8-set! bytes k octet) procedure
(bytes-s8-set! bytes k byte) procedure

K must be a valid index of bytes.

The bytes-u8-set! procedure stores octet in element k of
bytes.

The bytes-s8-set! procedure stores the two’s comple-
ment representation of byte in element k of bytes.

Both procedures return the unspecified value.

(let ((b (make-bytes 16 -127)))

(bytes-s8-set! b 0 -126)

(bytes-u8-set! b 1 246)

(list

(bytes-s8-ref b 0)
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(bytes-u8-ref b 0)

(bytes-s8-ref b 1)

(bytes-u8-ref b 1))) =⇒ (-126 130 -10 246)

(bytes-uint-ref bytes k endianness size) procedure
(bytes-sint-ref bytes k endianness size) procedure
(bytes-uint-set! bytes k n endianness size)

procedure
(bytes-sint-set! bytes k n endianness size)

procedure

Size must be a positive exact integer. {k , . . . , k + size − 1}
must be valid indices of bytes.

bytes-uint-ref retrieves the exact integer corresponding
to the unsigned representation of size size and specified by
endianness at indices {k , . . . , k + size − 1}.

bytes-sint-ref retrieves the exact integer corresponding
to the two’s complement representation of size size and
specified by endianness at indices {k , . . . , k + size − 1}.

For bytes-uint-set!, n must be an exact integer in the
set {0, . . . , 256size − 1}.

bytes-uint-set! stores the unsigned representation of
size size and specified by endianness into bytes at indices
{k , . . . , k + size − 1}.

For bytes-sint-set!, n must be an exact integer in the in-
terval {−256size/2, . . . , 256size/2− 1}. bytes-sint-set!
stores the two’s complement representation of size size and
specified by endianness into bytes at indices {k , . . . , k +
size − 1}.

The . . . -set! procedures return the unspecified value.

(define b (make-bytes 16 -127))

(bytes-uint-set! b 0 (- (expt 2 128) 3)

(endianness little) 16)

(bytes-uint-ref b 0 (endianness little) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytes-sint-ref b 0 (endianness little) 16)

=⇒ -3

(bytes->u8-list b)

=⇒ (253 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255)

(bytes-uint-set! b 0 (- (expt 2 128) 3)

(endianness big) 16)

(bytes-uint-ref b 0 (endianness big) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytes-sint-ref b 0 (endianness big) 16)

=⇒ -3

(bytes->u8-list b)

=⇒ (255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253))

(bytes-u16-ref bytes k endianness) procedure
(bytes-s16-ref bytes k endianness) procedure
(bytes-u16-native-ref bytes k) procedure
(bytes-s16-native-ref bytes k) procedure
(bytes-u16-set! bytes k n endianness) procedure
(bytes-s16-set! bytes k n endianness) procedure
(bytes-u16-native-set! bytes k n) procedure
(bytes-s16-native-set! bytes k n) procedure

K must be a valid index of bytes; so must k + 1.

These retrieve and set two-byte representations of num-
bers at indices k and k + 1, according to the endianness
specified by endianness. The procedures with u16 in their
names deal with the unsigned representation; those with
s16 in their names deal with the two’s complement repre-
sentation.

The procedures with native in their names employ the
native endianness, and only work at aligned indices: k must
be a multiple of 2.

The . . . -set! procedures return the unspecified value.

(define b

(u8-list->bytes

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytes-u16-ref b 14 (endianness little))

=⇒ 65023

(bytes-s16-ref b 14 (endianness little))

=⇒ -513

(bytes-u16-ref b 14 (endianness big))

=⇒ 65533

(bytes-s16-ref b 14 (endianness big))

=⇒ -3

(bytes-u16-set! b 0 12345 (endianness little))

(bytes-u16-ref b 0 (endianness little))

=⇒ 12345

(bytes-u16-native-set! b 0 12345)

(bytes-u16-native-ref b 0) =⇒ 12345

(bytes-u16-ref b 0 (endianness little))

=⇒ unspecified

(bytes-u32-ref bytes k endianness) procedure
(bytes-s32-ref bytes k endianness) procedure
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(bytes-u32-native-ref bytes k) procedure
(bytes-s32-native-ref bytes k) procedure
(bytes-u32-set! bytes k n endianness) procedure
(bytes-s32-set! bytes k n endianness) procedure
(bytes-u32-native-set! bytes k n) procedure
(bytes-s32-native-set! bytes k n) procedure

{k , . . . , k + 3} must be valid indices of bytes..

These retrieve and set four-byte representations of num-
bers at indices {k , . . . , k + 3}, according to the endianness
specified by endianness. The procedures with u32 in their
names deal with the unsigned representation, those with
s32 with the two’s complement representation.

The procedures with native in their names employ the
native endianness, and only work at aligned indices: k must
be a multiple of 4..

The . . . -set! procedures return the unspecified value.

(define b

(u8-list->bytes

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytes-u32-ref b 12 (endianness little))

=⇒ 4261412863

(bytes-s32-ref b 12 (endianness little))

=⇒ -33554433

(bytes-u32-ref b 12 (endianness big))

=⇒ 4294967293

(bytes-s32-ref b 12 (endianness big))

=⇒ -3

(bytes-u64-ref bytes k endianness) procedure
(bytes-s64-ref bytes k endianness) procedure
(bytes-u64-native-ref bytes k) procedure
(bytes-s64-native-ref bytes k) procedure
(bytes-u64-set! bytes k n endianness) procedure
(bytes-s64-set! bytes k n endianness) procedure
(bytes-u64-native-set! bytes k n) procedure
(bytes-s64-native-set! bytes k n) procedure

{k , . . . , k + 7} must be valid indices of bytes.

These retrieve and set eight-byte representations of num-
bers at indices {k , . . . , k + 7}, according to the endianness
specified by endianness. The procedures with u64 in their
names deal with the unsigned representation, those with
s64 with the two’s complement representation.

The procedures with native in their names employ the
native endianness, and only work at aligned indices: k must
be a multiple of 8.

The . . . -set! procedures return the unspecified value.

(define b

(u8-list->bytes

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytes-u64-ref b 8 (endianness little))

=⇒ 18302628885633695743

(bytes-s64-ref b 8 (endianness little))

=⇒ -144115188075855873

(bytes-u64-ref b 8 (endianness big))

=⇒ 18446744073709551613

(bytes-s64-ref b 8 (endianness big))

=⇒ -3

(bytes=? bytes1 bytes2) procedure

Returns #t if bytes1 and bytes2 are equal—that is, if they
have the same length and equal bytes at all valid indices.
It returns #f otherwise.

(bytes-ieee-single-native-ref bytes k) procedure
(bytes-ieee-single-ref bytes k endianness)

procedure

{k , . . . , k + 3} must be valid indices of bytes. For
bytes-ieee-single-native-ref, k must be a multiple of
4.

These procedures return the inexact real that best repre-
sents the IEEE-754 single precision number represented by
the four bytes beginning at index k .

(bytes-ieee-double-native-ref bytes k) procedure
(bytes-ieee-double-ref bytes k endianness)

procedure

{k , . . . , k + 7} must be valid indices of bytes. For
bytes-ieee-double-native-ref, k must be a multiple of
8.

These procedures return the inexact real that best repre-
sents the IEEE-754 single precision number represented by
the eight bytes beginning at index k .

(bytes-ieee-single-native-set! bytes k x)
procedure

(bytes-ieee-single-set! bytes k x endianness)
procedure

{k , . . . , k + 3} must be valid indices of bytes. For
bytes-ieee-single-native-set!, k must be a multiple
of 4. X must be a real number.

These procedures store an IEEE-754 single precision rep-
resentation of x into elements k through k +3 of bytes, and
returns the unspecified value.

(bytes-ieee-double-native-set! bytes k x)
procedure
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(bytes-ieee-double-set! bytes k x endianness)
procedure

{k , . . . , k + 7} must be valid indices of bytes. For
bytes-ieee-double-native-set!, k must be a multiple
of 8.

These procedures store an IEEE-754 double precision rep-
resentation of x into elements k through k +7 of bytes, and
returns the unspecified value.

(bytes-copy! source source-start target target-start n)
procedure

Source-start , target-start , and n must be non-negative ex-
act integers that satisfy

0 ≤ source-start ≤ source-start + n ≤ lsource
0 ≤ target-start ≤ target-start + n ≤ ltarget

where lsource is the length of source and ltarget is the
length of target .

The bytes-copy! procedure copies the bytes from source
at indices

{source-start , . . . source-start + n − 1}

to consecutive indices in target starting at target-index .

This must work even if the memory regions for the source
and the target overlap, i.e., the bytes at the target location
after the copy must be equal to the bytes at the source
location before the copy.

This returns the unspecified value.

(let ((b (u8-list->bytes ’(1 2 3 4 5 6 7 8))))

(bytes-copy! b 0 b 3 4)

(bytes->u8-list b)) =⇒ (1 2 3 1 2 3 4 8)

(bytes-copy bytes) procedure

Returns a newly allocated copy of bytes.

(bytes->u8-list bytes) procedure
(u8-list->bytes list) procedure

List must be a list of octets.

The bytes->u8-list procedure returns a newly allocated
list of the bytes of bytes in the same order.

The u8-list->bytes procedure returns a newly allocated
bytes object whose elements are the elements of list list , in
the same order. Analogous to list->vector.

(bytes->uint-list bytes endianness size) procedure
(bytes->sint-list bytes endianness size) procedure

(uint-list->bytes list endianness size) procedure
(sint-list->bytes list endianness size) procedure

Size must be a positive exact integer.

These procedures convert between lists of integers and
their consecutive representations according to size and
endianness in the bytes objects in the same way as
bytes->u8-list and u8-list->bytes do for one-byte rep-
resentations.

(let ((b (u8-list->bytes ’(1 2 3 255 1 2 1 2))))

(bytes->sint-list b (endianness little) 2))

=⇒ (513 -253 513 513)

(let ((b (u8-list->bytes ’(1 2 3 255 1 2 1 2))))

(bytes->uint-list b (endianness little) 2))

=⇒ (513 65283 513 513)

12. List utilities

This chapter describes the (r6rs lists) library.

(find proc list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. The find procedure applies proc to
the elements of list in order. If proc returns a true value
for an element, find immediately returns that element. If
proc returns #f for all elements of the list, it returns #f.

(find even? ’(3 1 4 1 5 9)) =⇒ 4

(find even? ’(3 1 5 1 5 9)) =⇒ #f

(forall proc l1 l2 . . . ) procedure
(exists proc l1 l2 . . . ) procedure

The ls must all be the empty list, or chains of pairs of sizes
according to the condition specified below. proc must be
a procedure; it must take a single argument if the ls are
non-empty.

The forall procedure applies proc element-wise to the el-
ements of the ls. If proc returns #t for all but the last
elements of the ls, forall performs a tail call of proc on the
last elements—in this case, the ls must all be lists. If proc
returns #f on any set of elements, forall returns #f after
the first such application of proc without further traversing
the ls. If the ls are all empty, forall returns #t.

The exists procedure applies proc element-wise to the el-
ements of the ls. If proc returns #f for all but the last
elements of the ls, exists performs a tail call of proc on the
last elements—in this case, the ls must all be lists. If proc
returns a true value on any set of elements, exists returns
that value after the first such application of proc without
further traversing the ls. If the ls are all empty, exists
returns #f.
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(forall even? ’(3 1 4 1 5 9))=⇒ #f

(forall even? ’(3 1 4 1 5 9 . 2))=⇒ #f

(forall even? ’(2 1 4 14)) =⇒ #t

(forall even? ’(2 1 4 14 . 9))

=⇒ &contract exception
(forall (lambda (n) (and (even? n) n)) ’(2 1 4 14)

=⇒ 14

(exists even? ’(3 1 4 1 5 9))=⇒ #t

(exists even? ’(3 1 1 5 9)) =⇒ #f

(exists even? ’(3 1 1 5 9 . 2))

=⇒ &contract exception
(exists (lambda (n) (and (even? n) n)) ’(2 1 4 14)

=⇒ 2

(filter proc list) procedure
(partition proc list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. The filter procedure successively
applies proc to the elements of list and returns a list of the
values of list for which proc returned a true value. The
partition procedure also successively applies proc to the
elements of list , but returns two values, the first one a list
of the values of list for which proc returned a true value,
and the second a list of the values of list for which proc
returned #f.

(filter even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6)

(partition even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6) (3 1 1 5 9) ; two values

(fold-left kons nil list1 list2 . . . listn) procedure

If more than one list is given, then they must all be the
same length. kons must be a procedure; if the lists are non-
empty, it must take one more argument than there are lists.
The fold-left procedure iterates the kons procedure over
an accumulator value and the values of the lists from left
to right, starting with an accumulator value of nil . More
specifically, fold-left returns nil if the lists are empty.
If they are not empty, kons is first applied to nil and the
respective first elements of the lists in order. The result
becomes the new accumulator value, and kons is applied
to new accumulator value and the respective next elements
of the list. This step is repeated until the end of the list is
reached; then the accumulator value is returned.

(fold-left + 0 ’(1 2 3 4 5))=⇒ 15

(fold-left (lambda (a e) (cons e a)) ’()

’(1 2 3 4 5))

=⇒ (5 4 3 2 1)

(fold-left (lambda (x count)

(if (odd? x) (+ count 1) count))

0

’(3 1 4 1 5 9 2 6 5))

=⇒ 6

(fold-left (lambda (max-len s)

(max max-len (string-length s)))

0

’("longest" "long" "longer"))

=⇒ 7

(fold-left cons ’(q) ’(a b c))

=⇒ ((((q) . a) . b) . c)

(fold-left + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

(fold-right kons nil list1 list2 . . . listn) procedure

If more than one list is given, then they must all be the
same length. kons must be a procedure; if the lists are
non-empty, it must take one more argument than there are
lists. The fold-right procedure iterates the kons proce-
dure over the values of the lists from right to left and an
accumulator value, starting with an accumulator value of
nil . More specifically, fold-right returns nil if the lists
are empty. If they are not empty, kons is first applied to
the respective last elements of the lists in order and nil .
The result becomes the new accumulator value, and kons
is applied to the respective previous elements of the list and
the new accumulator value. This step is repeated until the
beginning of the list is reached; then the accumulator value
is returned.

(fold-right + 0 ’(1 2 3 4 5))=⇒ 15

(fold-right cons ’() ’(1 2 3 4 5))

=⇒ (1 2 3 4 5)

(fold-right (lambda (x l)

(if (odd? x) (cons x l) l))

’()

’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 5)

(fold-right cons ’(q) ’(a b c))

=⇒ (a b c q)

(fold-right + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

(remp proc list) procedure
(remove obj list) procedure
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(remv obj list) procedure
(remq obj list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. Each of these procedures returns a list
of the elements of list that do not satisfy a given condi-
tion. The remp procedure successively applies proc to the
elements of list and returns a list of the values of list for
which proc returned #f. The remove, remv, and remq pro-
cedures return a list of the elements that are not obj . The
remq procedure uses eq? to compare obj with the elements
of list , while remv uses eqv? and remove uses equal?.

(remp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 2 5)

(remove 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remv 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remq ’foo ’(bar foo baz)) =⇒ (bar baz)

(memp proc l) procedure
(member obj l) procedure
(memv obj l) procedure
(memq obj l) procedure

Proc must be a procedure; it must take a single argument
if l is non-empty. l must be the empty list or a chain of
pairs of size according to the conditions stated below.

These procedures return the first sublist of l whose car
satisfies a given condition, where the subchains of l are
the chains of pairs returned by (list-tail l k) for k less
than the length of l . The memp procedure applies proc to
the cars of the sublists of l until it finds one for which
proc returns a true value without traversing l further. The
member, memv, and memq procedures look for the first oc-
currence of obj . If l does not contain an element satisfying
the condition, then #f (not the empty list) is returned; in
that case, l must be a list. The member procedure uses
equal? to compare obj with the elements of l , while memv
uses eqv? and memq uses eq?.

(memp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (4 1 5 9 2 6 5)

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

Rationale: Although they are ordinarily used as predicates,

memp, member, memv, memq, do not have question marks in their

names because they return useful values rather than just #t or

#f.

(assp proc al) procedure
(assoc obj al) procedure
(assv obj al) procedure
(assq obj al) procedure

Al (for “association list”) must be the empty list or a chain
of pairs where each car contains a pair of size according to
the conditions specified below. Proc must be a procedure;
it must take a single argument if al is non-empty.

These procedures find the first pair in al whose car field
satisfies a given condition, and returns that pair without
traversing al further. If no pair in al satisfies the condition,
then #f is returned; in that case, al must be a list. The
assp procedure successively applies proc to the car fields
of al and looks for a pair for which it returns a true value.
The assoc, assv, and assq procedures look for a pair that
has obj as its car. The assoc procedure uses equal? to
compare obj with the car fields of the pairs in al , while
assv uses eqv? and assq uses eq?.

(define d ’((3 a) (1 b) (4 c)))

(assp even? d) =⇒ (4 c)

(assp odd? d) =⇒ (3 a)

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

13. Records

This section describes abstractions for creating new data
types representing records—data structures with named
fields. The record mechanism comes in four libraries:

• the (r6rs records procedural) library, a procedu-
ral layer for creating and manipulating record types
and record instances,

• the (r6rs records explicit) library, an explicit-
naming syntactic layer for defining record types and
explicitly named bindings for various procedures to
manipulate the record type,
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• the (r6rs records implicit) library, an implicit-
naming syntactic layer that extends the explicit-
naming syntactic layer, allowing the names of the de-
fined procedures to be determined implicitly from the
names of the record type and fields, and

• the (r6rs records inspection) library, a set of in-
spection procedures.

The procedural layer allows programs to construct new
record types and the associated procedures for creating and
manipulating records dynamically. It is particularly use-
ful for writing interpreters that construct host-compatible
record types. It may also serve as a target for expansion
of the syntactic layers.

The explicit-naming syntactic layer provides a basic syn-
tactic interface whereby a single record definition serves
as a shorthand for the definition of several record creation
and manipulation routines: a construction procedure, a
predicate, field accessors, and field mutators. As the name
suggests, the explicit-naming syntactic layer requires the
programmer to name each of these procedures explicitly.

The implicit-naming syntactic layer extends the explicit-
naming syntactic layer by allowing the names for the con-
struction procedure, predicate, accessors, and mutators to
be determined automatically from the name of the record
and names of the fields. This establishes a standard naming
convention and allows record-type definitions to be more
succinct, with the downside that the procedure definitions
cannot easily be located via a simple search for the proce-
dure name. The programmer may override some or all of
the default names by specifying them explicitly, as in the
explicit-naming syntactic layer.

The two syntactic layers are designed to be fully compati-
ble; the implicit-naming layer is simply a conservative ex-
tension of the explicit-naming layer. The design makes
both explicit-naming and implicit-naming definitions rea-
sonably natural while allowing a seamless transition be-
tween explicit and implicit naming.

Each of these layers permits record types to be extended
via single inheritance, allowing record types to model hier-
archies that occur in applications like algebraic data types
as well as single-inheritance class systems.

Each of the layers also supports generative and nongener-
ative record types.

The inspection procedures allow programs to obtain from a
record instance a descriptor for the type and from there ob-
tain access to the fields of the record instance. This allows
the creation of portable printers and inspectors. A program
may prevent access to a record’s type and thereby protect
the information stored in the record from the inspection
mechanism by declaring the type opaque. Thus, opacity as
presented here can be used to enforce abstraction barriers.

This section uses the rtd and constructor-descriptor pa-
rameter names for arguments that must be record-type
descriptors and constructor descriptors, respectively (see
section 13.1).

13.1. Procedural layer

The procedural layer is provided by the (r6rs records
procedural) library.

(make-record-type-descriptor name procedure
parent uid sealed? opaque? fields)

Returns a record-type descriptor, or rtd, representing a
record type distinct from all built-in types and other record
types.

The name argument must be a symbol naming the record
type; it is intended purely for informational purposes and
may be used for printing by the underlying Scheme system.

The parent argument must be either #f or an rtd. If it is
an rtd, the returned record type, t , extends the record type
p represented by parent . Each record of type t is also a
record of type p, and all operations applicable to a record
of type p are also applicable to a record of type t , except
for inspection operations if t is opaque but p is not. An
exception with condition type &contract is raised if parent
is sealed (see below).

The extension relationship is transitive in the sense that a
type extends its parent’s parent, if any, and so on.

The uid argument must be either #f or a symbol. If uid
is a symbol, the record-creation operation is nongenerative
i.e., a new record type is created only if no previous call to
make-record-type-descriptor was made with the uid .
If uid is #f, the record-creation operation is generative,
i.e., a new record type is created even if a previous call to
make-record-type-descriptor was made with the same
arguments.

If make-record-type-descriptor is called twice with the
same uid symbol, the parent arguments in the two calls
must be eqv?, the fields arguments equal?, the sealed? ar-
guments boolean-equivalent (both false or both non-false),
and the opaque? arguments boolean-equivalent. If these
conditions are not met, an exception with condition type
&contract is raised when the second call occurs. If they
are met, the second call returns, without creating a new
record type, the same record-type descriptor (in the sense
of eqv?) as the first call.

Note: Users are encouraged to use symbol names constructed

using the UUID namespace (for example, using the record-type

name as a prefix) for the uid argument.

The sealed? flag must be a boolean. If true, the returned
record type is sealed, i.e., it cannot be extended.
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The opaque? flag must be a boolean. If true, the record
type is opaque. If passed an instance of the record type,
record? returns #f and record-rtd (see “Inspection” be-
low) raises an exception with condition type &contract.
The record type is also opaque if an opaque parent is sup-
plied. If opaque? is false and an opaque parent is not sup-
plied, the record is not opaque.

The fields argument must be a list of field specifiers. Each
field specifier must be a list of the form (mutable name) or
a list of the form (immutable name). Each name must be
a symbol and names the corresponding field of the record
type; the names need not be distinct. A field identified as
mutable may be modified, whereas an attempt to obtain a
mutator for a field identified as immutable raises an excep-
tion with condition type &contract. Where field order is
relevant, e.g., for record construction and field access, the
fields are considered to be ordered as specified, although no
particular order is required for the actual representation of
a record instance.

The specified fields are added to the parent fields, if any, to
determine the complete set of fields of the returned record
type.

A record type is considered immutable if each of its com-
plete set of fields is immutable, and is mutable otherwise.

A generative record-type descriptor created by a call to
make-record-type-descriptor is not eqv? to any record-
type descriptor (generative or nongenerative) created by
another call to make-record-type-descriptor. A gen-
erative record-type descriptor is eqv? only to itself, i.e.,
(eqv? rtd1 rtd2) iff (eq? rtd1 rtd2). Also, two non-
generative record-type descriptors are eqv? iff they were
created by calls to make-record-type-descriptor with
the same uid arguments.

Rationale: The record and field names passed to
make-record-type-descriptor and appearing in the explicit-
naming syntactic layer are for informational purposes only, e.g.,
for printers and debuggers. In particular, the accessor and mu-
tator creation routines do not use names, but rather field in-
dices, to identify fields.

Thus, field names are not required to be distinct in the proce-
dural or implicit-naming syntactic layers. This relieves macros
and other code generators from the need to generate distinct
names.

The record and field names are used in the implicit-naming syn-

tactic layer for the generation of accessor and mutator names,

and duplicate field names may lead to accessor and mutator

naming conflicts.

Rationale: Sealing a record type can help to enforce abstrac-

tion barriers by preventing extensions that may expose imple-

mentation details of the parent type. Type extensions also make

monomorphic code polymorphic and difficult to change the par-

ent class at a later time, and also prevent effective predictions

of types by a compiler or human reader.

Rationale: Multiple inheritance was considered but omitted

from the records facility, as it raises a number of semantic issues

such as sharing among common parent types.

(record-type-descriptor? obj) procedure

Returns #t if the argument is a record-type descriptor, #f
otherwise.

(make-record-constructor-descriptor rtd procedure
parent-constructor-descriptor protocol)

Returns a record-constructor descriptor (or constructor de-
scriptor for short) that can be used to create record con-
structors (via record-constructor; see below) or other
constructor descriptors. rtd must be a record-type descrip-
tor. protocol must be a procedure or #f. If it is #f, a default
protocol procedure is supplied. If protocol is a procedure, it
is called by record-constructor with a single argument
p and must return a procedure that creates and returns an
instance of the record type using p as described below.

If rtd is not an extension of another record type, then
parent-constructor-descriptor must be #f. In this case,
protocol ’s argument p is a procedure new that expects one
parameter for every field of rtd and returns a record in-
stance with the fields of rtd initialized to its arguments.
The procedure returned by protocol may take any number
of arguments but must call new with the number of argu-
ments it expects and return the resulting record instance,
as shown in the simple example below.

(lambda (new)

(lambda (v1 ...)

(new v1 ...)))

Here, the call to new returns a record whose fields are sim-
ply initialized with the arguments v1 .... The expression
above is equivalent to (lambda (new) new).

If rtd is an extension of another record type
parent-rtd , parent-constructor-descriptor must be
a constructor descriptor of parent-rtd or #f. If
parent-constructor-descriptor is #f, a default constructor
descriptor is supplied. In this case, p is a procedure that
accepts the same number of arguments as the constructor
of parent-constructor-descriptor and returns a procedure
new , which, as above, expects one parameter for every field
of rtd (not including parent fields) and returns a record
instance with the fields of rtd initialized to its arguments
and the fields of parent-rtd and its parents initialized by
the constructor of parent-constructor-descriptor . A simple
protocol in this case might be written as follows.

(lambda (p)
(lambda (x1 ... v1 ...)

(let ((new (p x ...)))

(new v1 ...))))
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This passes some number of arguments x1 ... to p for
the constructor of parent-constructor-descriptor and calls
new with v1 ... to initialize the child fields.

The constructor descriptors for a record type form a chain
of protocols exactly parallel to the chain of record-type
parents. Each constructor descriptor in the chain deter-
mines the field values for the associated record type. Child
record constructors need not know the number or contents
of parent fields, only the number of arguments required by
the parent constructor.

protocol may be #f, specifying a default, only if rtd is not
an extension of another record type, or, if it is, if the parent
constructor-descriptor encapsulates a default protocol. In
the first case, the default protocol procedure is equivalent
to the following:

(lambda (p)

(lambda field-values

(apply p field-values)))

or, simply, (lambda (p) p).

In the second case, the default protocol procedure returns
a constructor that accepts one argument for each of the
record type’s complete set of fields (including those of the
parent record type, the parent’s parent record type, etc.)
and returns a record with the fields initialized to those ar-
guments, with the field values for the parent coming before
those of the extension in the argument list.

Even if rtd extends another record type,
parent-constructor-descriptor may also be #f, in which
case a constructor with default protocol is supplied.
Rationale: The constructor-descriptor mechanism is an infra-
structure for creating specialized constructors, rather than just
creating default constructors that accept the initial values of
all the fields as arguments. This infrastructure achieves full
generality while leaving each level of an inheritance hierarchy in
control over its own fields and allowing child record definitions
to be abstracted away from the actual number and contents of
parent fields.

The design allows the initial values of the fields to be specially
computed or to default to constant values. It also allows for op-
erations to be performed on or with the resulting record, such
as the registration of a widget record for finalization. More-
over, the constructor-descriptor mechanism allows the creation
of such initializers in a modular manner, separating the initial-
ization concerns of the parent types from those of the exten-
sions.

The mechanism described here achieves complete generality

without cluttering the syntactic layer, sacrificing a bit of no-

tational convenience in special cases.

(record-constructor constructor-descriptor) procedure

Calls the protocol of constructor-descriptor (as de-
scribed for make-record-constructor-descriptor) and

returns the resulting construction procedure constructor
for instances of the record type associated with
constructor-descriptor .

Two values created by constructor are equal according to
equal? iff they are eqv?, provided their record type is not
used to implement any of the types explicitly mentioned in
the definition of equal?.

For any constructor returned by record-constructor, the
following holds:

(let ((r (constructor v ...)))

(eqv? r r)) =⇒ #t

For mutable records, but not necessarily for immutable
ones, the following hold. (A record of an mutable record
type is mutable; a record of an immutable record type is
immutable.)

(let ((r (constructor v ...)))

(eq? r r)) =⇒ #t

(let ((f (lambda () (constructor v ...))))

(eq? (f) (f))) =⇒ #f

(record-predicate rtd) procedure

Returns a procedure that, given an object obj , returns a
boolean that is #t iff obj is a record of the type represented
by rtd .

(record-accessor rtd k) procedure

K must be a valid field index of rtd . The record-accessor
procedure returns a one-argument procedure that, given a
record of the type represented by rtd , returns the value of
the selected field of that record.

The field selected is the one corresponding the the kth
element (0-based) of the fields argument to the invocation
of make-record-type-descriptor that created rtd . Note
that k cannot be used to specify a field of any type rtd
extends.

If the accessor procedure is given something other than a
record of the type represented by rtd , an exception with
condition type &contract is raised. Records of the type
represented by rtd include records of extensions of the type
represented by rtd .

(record-mutator rtd k) procedure

K must be a valid field index of rtd . The record-mutator
procedure returns a two-argument procedure that, given
a record r of the type represented by rtd and an object
obj , stores obj within the field of r specified by k . The k
argument is as in record-accessor. If k specifies an im-
mutable field, an exception with condition type &contract
is raised. The mutator returns the unspecified value.
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(define :point

(make-record-type-descriptor

’point #f

#f #f #f

’((mutable x) (mutable y))))

(define make-point

(record-constructor

(make-record-constructor-descriptor :point

#f #f)))

(define point? (record-predicate :point))

(define point-x (record-accessor :point 0))

(define point-y (record-accessor :point 1))

(define point-x-set! (record-mutator :point 0))

(define point-y-set! (record-mutator :point 1))

(define p1 (make-point 1 2))

(point? p1) =⇒ #t

(point-x p1) =⇒ 1

(point-y p1) =⇒ 2

(point-x-set! p1 5) =⇒ the unspecified value
(point-x p1) =⇒ 5

(define :point2

(make-record-type-descriptor

’point2 :point

#f #f #f ’((mutable x) (mutable y))))

(define make-point2

(record-constructor

(make-record-constructor-descriptor :point2

#f #f)))

(define point2? (record-predicate :point2))

(define point2-xx (record-accessor :point2 0))

(define point2-yy (record-accessor :point2 1))

(define p2 (make-point2 1 2 3 4))

(point? p2) =⇒ #t

(point-x p2) =⇒ 1

(point-y p2) =⇒ 2

(point2-xx p2) =⇒ 3

(point2-yy p2) =⇒ 4

13.2. Explicit-naming syntactic layer

The explicit-naming syntactic layer is provided by the
(r6rs records explicit) library.

The record-type-defining form define-record-type is a
definition and can appear anywhere any other 〈definition〉
can appear.

(define-record-type 〈name spec〉 〈record clause〉*)
syntax

A define-record-type form defines a record type along
with associated constructor descriptor and constructor,

predicate, field accessors, and field mutators. The
define-record-type form expands into a set of defini-
tions in the environment where define-record-type ap-
pears; hence, it is possible to refer to the bindings (except
for that of the record type itself) recursively.

The 〈name spec〉 specifies the names of the record type,
construction procedure, and predicate. It must take the
following form.

(〈record name〉 〈constructor name〉 〈predicate name〉)

〈Record name〉, 〈constructor name〉, and 〈predicate name〉
must all be identifiers.

〈Record name〉, taken as a symbol, becomes the name
of the record type. Additionally, it is bound by this
definition to an expand-time or run-time description
of the record type for use as parent name in syn-
tactic record-type definitions that extend this defini-
tion. It may also be used as a handle to gain ac-
cess to the underlying record-type descriptor and con-
structor descriptor (see record-type-descriptor and
record-constructor-descriptor below).

〈Constructor name〉 is defined by this definition to be a
constructor for the defined record type, with a protocol
specified by the protocol clause, or, in its absence, using
a default protocol. For details, see the description of the
protocol clause below.

〈Predicate name〉 is defined by this definition to a predicate
for the defined record type.

Each 〈record clause〉 must take one of the following forms;
it is a syntax violation if multiple 〈record clause〉s of the
same kind appear in a define-record-type form.

• (fields 〈field-spec〉*)
where each 〈field-spec〉 has one of the following forms

(immutable 〈field name〉 〈accessor name〉)
(mutable 〈field name〉

〈accessor name〉 〈mutator name〉)

〈Field name〉, 〈accessor name〉, and 〈mutator name〉
must all be identifiers. The first form de-
clares an immutable field called 〈field name〉, with
the corresponding accessor named 〈acccessor name〉.
The second form declares a mutable field called
〈field name〉, with the corresponding accessor named
〈acccessor name〉, and with the corresponding muta-
tor named 〈mutator name〉.
The 〈field name〉s become, as symbols, the names of
the fields of the record type being created, in the same
order. They are not used in any other way.
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• (parent 〈parent name〉)

This specifies that the record type is to have par-
ent type 〈parent name〉, where 〈parent name〉 is the
〈record name〉 of a record type previously defined us-
ing define-record-type. The absence of a parent
clause implies a record type with no parent type.

• (protocol 〈expression〉)

〈Expression〉 is evaluated in the same envi-
ronment as the define-record-type form, and
must evaluate to a protocol appropriate for the
record type being defined (see the description of
make-record-constructor-descriptor). The pro-
tocol is used to create a record-constructor descriptor
where, if the record type being defined has a parent,
the parent-type constructor descriptor is the one
associated with the parent type specified in the
parent clause.

If no protocol clause is specified, a construc-
tor descriptor is still created using a default pro-
tocol. The rules for this are the same as for
make-record-constructor-descriptor: the clause
can be absent only if the record type defined has no
parent type, or if the parent definition does not specify
a protocol.

• (sealed #t)
(sealed #f)

If this option is specified with operand #t, the defined
record type is sealed. Otherwise, the defined record
type is not sealed.

• (opaque #t)
(opaque #f)

If this option is specified with operand #t, or if an
opaque parent record type is specified, the defined
record type is opaque. Otherwise, the defined record
type is not opaque.

• (nongenerative 〈uid〉)

This specifies that the record type is non-
generative with uid 〈uid〉, which must be an
〈identifier〉. If two record-type definitions spec-
ify the same uid , then the implied arguments to
make-record-type-descriptor must be equivalent
as described under make-record-type-descriptor.
If this condition is not met, it is either considered a
syntax violation or an exception with condition type
&contract is raised. If the condition is met, a single
record type is generated for both definitions.

In the absence of a nongenerative clause, a
new record type is generated every time a
define-record-type form is evaluated:

(let ((f (lambda (x)

(define-record-type r ...)

(if x r? (make-r ...)))))

((f #t) (f #f))) =⇒ #f

All bindings created by define-record-type (for the
record type, the construction procedure, the predicate, the
accessors, and the mutators) must have names that are
pairwise distinct.

(record-type-descriptor 〈record name〉) syntax

Evaluates to the record-type descriptor associated with the
type specified by 〈record-name〉.
Note that record-type-descriptor works on both
opaque and non-opaque record types.

(record-constructor-descriptor 〈record name〉)
syntax

Evaluates to the record-constructor descriptor associated
with 〈record name〉.
Explicit-naming syntactic-layer examples:

(define-record-type (point3 make-point3 point3?)

(fields (immutable x point3-x)

(mutable y point3-y set-point3-y!))

(nongenerative

point3-4893d957-e00b-11d9-817f-00111175eb9e))

(define-record-type (cpoint make-cpoint cpoint?)

(parent point3)

(protocol

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))

(fields

(mutable rgb cpoint-rgb cpoint-rgb-set!)))

(define (color->rgb c)

(cons ’rgb c))

(define p3-1 (make-point3 1 2))

(define p3-2 (make-cpoint 3 4 ’red))

(point3? p3-1) =⇒ #t

(point3? p3-2) =⇒ #t

(point3? (vector)) =⇒ #f

(point3? (cons ’a ’b)) =⇒ #f

(cpoint? p3-1) =⇒ #f

(cpoint? p3-2) =⇒ #t

(point3-x p3-1) =⇒ 1

(point3-y p3-1) =⇒ 2

(point3-x p3-2) =⇒ 3

(point3-y p3-2) =⇒ 4

(cpoint-rgb p3-2) =⇒ ’(rgb . red)
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(set-point3-y! p3-1 17)

(point3-y p3-1) =⇒ 17)

(record-rtd p3-1)

=⇒ (record-type-descriptor point3)

(define-record-type (ex1 make-ex1 ex1?)

(protocol (lambda (new) (lambda a (new a))))

(fields (immutable f ex1-f)))

(define ex1-i1 (make-ex1 1 2 3))

(ex1-f ex1-i1) =⇒ ’(1 2 3)

(define-record-type (ex2 make-ex2 ex2?)

(protocol

(lambda (new) (lambda (a . b) (new a b))))

(fields (immutable a ex2-a)

(immutable b ex2-b)))

(define ex2-i1 (make-ex2 1 2 3))

(ex2-a ex2-i1) =⇒ 1

(ex2-b ex2-i1) =⇒ ’(2 3)

(define-record-type (unit-vector

make-unit-vector

unit-vector?)

(protocol

(lambda (new)

(lambda (x y z)

(let ((length (+ (* x x) (* y y) (* z z))))

(new (/ x length)

(/ y length)

(/ z length))))))

(fields (immutable x unit-vector-x)

(immutable y unit-vector-y)

(immutable z unit-vector-z)))

13.3. Implicit-naming syntactic layer

The implicit-naming syntactic layer is provided by the
(r6rs records implicit) library.

The define-record-type form of the implicit-naming
syntactic layer is a conservative extension of the
define-record-type form of the explicit-naming layer: a
define-record-type form that conforms to the syntax of
the explicit-naming layer also conforms to the syntax of the
implicit-naming layer, and any definition in the implicit-
naming layer can be understood by its translation into the
explicit-naming layer.

This means that a record type defined by the
define-record-type form of either layer can be used by
the other.

The implicit-naming syntactic layer extends the explicit-
naming layer in two ways. First, 〈name-spec〉 may be a
single identifier representing just the record name. In this

case, the name of the construction procedure is generated
by prefixing the record name with make-, and the predi-
cate name is generated by adding a question mark (?) to
the end of the record name. For example, if the record
name is frob, the name of the construction procedure is
make-frob, and the predicate name is frob?.

Second, the syntax of 〈field-spec〉 is extended to allow
the accessor and mutator names to be omitted. That is,
〈field-spec〉 can take one of the following forms as well as
the forms described in the preceding section.

(immutable 〈field name〉)
(mutable 〈field name〉)

If 〈field-spec〉 takes one of these forms, the accessor name
is generated by appending the record name and field name
with a hyphen separator, and the mutator name (for a
mutable field) is generated by adding a -set! suffix to the
accessor name. For example, if the record name is frob and
the field name is widget, the accessor name is frob-widget
and the mutator name is frob-widget-set!.

Any definition that takes advantage of implicit naming can
be rewritten trivially to a definition that conforms to the
syntax of the explicit-naming layer merely by specifing the
names explicitly. For example, the implicit-naming layer
record definition:

(define-record-type frob

(fields (mutable widget))

(protocol

(lambda (c) (c (make-widget n)))))

is equivalent to the following explicit-naming layer record
definition.

(define-record-type (frob make-frob frob?)

(fields (mutable widget

frob-widget frob-widget-set!))

(protocol

(lambda (c) (c (make-widget n)))))

With the implicit-naming layer, one can choose to specify
just some of the names explicitly; for example, the follow-
ing overrides the choice of accessor and mutator names for
the widget field.

(define-record-type frob

(fields (mutable widget getwid setwid!))

(protocol

(lambda (c) (c (make-widget n)))))

(define *ex3-instance* #f)

(define-record-type ex3

(parent cpoint)

(protocol

(lambda (p)
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(lambda (x y t)

(let ((r ((p x y ’red) t)))

(set! *ex3-instance* r)

r))))

(fields

(mutable thickness))

(sealed #t) (opaque #t))

(define ex3-i1 (make-ex3 1 2 17))

(ex3? ex3-i1) =⇒ #t

(cpoint-rgb ex3-i1) =⇒ ’(rgb . red)

(ex3-thickness ex3-i1) =⇒ 17

(ex3-thickness-set! ex3-i1 18)

(ex3-thickness ex3-i1) =⇒ 18

ex3-instance* =⇒ ex3-i1

(record? ex3-i1) =⇒ #f

(record-type-descriptor 〈record name〉) syntax

This is the same as record-type-descriptor from the
(r6rs records explicit) library.

(record-constructor-descriptor 〈record name〉)
syntax

This is the same as record-constructor-descriptor
from the (r6rs records explicit) library.

13.4. Inspection

The implicit-naming syntactic layer is provided by the
(r6rs records inspection) library.

A set of procedures are provided for inspecting records
and their record-type descriptors. These procedures are
designed to allow the writing of portable printers and in-
spectors.

Note that record? and record-rtd treat records of opaque
record types as if they were not records. On the other
hand, the inspection procedures that operate on record-
type descriptors themselves are not affected by opacity. In
other words, opacity controls whether a program can ob-
tain an rtd from an instance. If the program has access
to the original rtd via make-record-type-descriptor or
record-type-descriptor it can still make use of the in-
spection procedures.

Any of the standard types mentioned in this report may
or may not be implemented as a non-opaque record type.
Consequently, record?, when applied to an object of one
of these types, may return #t. In this case, inspection is
possible for these objects.

(record? obj) procedure

Returns #t if obj is a record, and its record type is not
opaque. Returns #f otherwise.

(record-rtd record) procedure

Returns the rtd representing the type of record if the type
is not opaque. The rtd of the most precise type is returned;
that is, the type t such that record is of type t but not of
any type that extends t . If the type is opaque, an exception
is raised with condition type &contract.

(record-type-name rtd) procedure

Returns the name of the record-type descriptor rtd .

(record-type-parent rtd) procedure

Returns the parent of the record-type descriptor rtd , or #f
if it has none.

(record-type-uid rtd) procedure

Returns the uid of the record-type descriptor rtd, or #f if
it has none. (An implementation may assign a generated
uid to a record type even if the type is generative, so the
return of a uid does not necessarily imply that the type is
nongenerative.)

(record-type-generative? rtd) procedure

Returns #t if rtd is generative, and #f if not.

(record-type-sealed? rtd) procedure

Returns a boolean value indicating whether the record-type
descriptor is sealed.

(record-type-opaque? rtd) procedure

Returns a boolean value indicating whether the record-type
descriptor is opaque.

(record-type-field-names rtd) procedure

Returns a list of symbols naming the fields of the type
represented by rtd (not including the fields of parent
types) where the fields are ordered as described under
make-record-type-descriptor.

(record-field-mutable? rtd k) procedure

Returns a boolean value indicating whether the field spec-
ified by k of the type represented by rtd is mutable, where
k is as in record-accessor.
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14. Exceptions and conditions

Scheme allows programs to deal with exceptional situa-
tions using two cooperating facilities: The exception sys-
tem allows the program, when it detects an exceptional
situation, to pass control to an exception handler, and for
dynamically establishing such exception handlers. Excep-
tion handlers are always invoked with an object describing
the exceptional situation. Scheme’s condition system pro-
vides a standardized taxonomy of such descriptive objects,
as well as facility for defining new condition types.

14.1. Exceptions

This section describes Scheme’s exception-handling and
exception-raising constructs provided by the (r6rs
exceptions) library.

Note: This specification follows SRFI 34 [29].

Exception handlers are one-argument procedures that de-
termine the action the program takes when an exceptional
situation is signalled. The system implicitly maintains a
current exception handler.

The program raises an exception by invoking the current
exception handler, passing to it an object encapsulating
information about the exception. Any procedure accepting
one argument may serve as an exception handler and any
object may be used to represent an exception.

The system maintains the current exception handler as
part of the dynamic environment of the program, the con-
text for dynamic-wind. The dynamic environment can be
thought of as that part of a continuation that does not
specify the destination of any returned values. It includes
the dynamic-wind context, and the current exception han-
dler.

When a safe script begins its execution, the current excep-
tion handler is expected to handle all &serious conditions
by interrupting execution, reporting that an exception has
been raised, and displaying information about the condi-
tion object that was provided. The handler may then exit,
or may provide a choice of other options. Moreover, the
exception handler is expected to return when passed any
other (“non-serious”) condition. Interpretation of these ex-
pectations necessarily depends upon the nature of the sys-
tem in which scripts are executed, but the intent is that
users perceive the raising of an exception as a controlled
escape from the situation that raised the exception, not as
a crash.

(with-exception-handler handler thunk) procedure

Handler must be a procedure that accepts one argument.
The with-exception-handler procedure returns the re-
sult(s) of invoking thunk . Handler is installed as the cur-

rent exception handler for the dynamic extent (as deter-
mined by dynamic-wind) of the invocation of thunk .

(guard (〈variable〉 〈clause1〉 〈clause2〉 . . . ) 〈body〉)
syntax

Syntax: Each 〈clause〉 should have the same form as a cond
clause. (Section 9.5.5.)

Semantics: Evaluating a guard form evaluates 〈body〉
with an exception handler that binds the raised object to
〈variable〉 and within the scope of that binding evaluates
the clauses as if they were the clauses of a cond expres-
sion. That implicit cond expression is evaluated with the
continuation and dynamic environment of the guard ex-
pression. If every 〈clause〉’s 〈test〉 evaluates to false and
there is no else clause, then raise is re-invoked on the
raised object within the dynamic environment of the orig-
inal call to raise except that the current exception handler
is that of the guard expression.

(raise obj) procedure

Raises a non-continuable exception by invoking the current
exception handler on obj . The handler is called with a con-
tinuation whose dynamic environment is that of the call to
raise, except that the current exception handler is the one
that was in place for the call to with-exception-handler
that installed the handler being called. The continuation
of the handler raises a non-continuable exception with con-
dition type &non-continuable.

(raise-continuable obj) procedure

Raises a continuable exception by invoking the current
exception handler on obj . The handler is called with
a continuation that is equivalent to the continuation of
the call to raise-continuable with these two exceptions:
(1) the current exception handler is the one that was in
place for the call to with-exception-handler that in-
stalled the handler being called, and (2) if the handler
being called returns, then it will again become the cur-
rent exception handler. If the handler returns, the value(s)
it returns become(s) the value(s) returned by the call to
raise-continuable.

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "condition: ")

(write x)

(newline)

(k ’exception))

(lambda ()

(+ 1 (raise ’an-error))))))

prints: condition: an-error

=⇒ exception
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(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "something went wrong")

(newline)

’dont-care)

(lambda ()

(+ 1 (raise ’an-error))))))

prints: something went wrong

and then interrupts the program, reporting a
&non-continuable exception

(guard (condition

(else

(display "condition: ")

(write condition)

(newline)

’exception))

(+ 1 (raise ’an-error)))

prints: condition: an-error

=⇒ exception

(guard (condition

(else

(display "something went wrong")

(newline)

’dont-care))

(+ 1 (raise ’an-error)))

prints: something went wrong

=⇒ dont-care

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "reraised ") (write x) (newline)

(k ’zero))

(lambda ()

(guard (condition

((positive? condition) ’positive)

((negative? condition) ’negative))

(raise 1))))))

=⇒ positive

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "reraised ") (write x) (newline)

(k ’zero))

(lambda ()

(guard (condition

((positive? condition) ’positive)

((negative? condition) ’negative))

(raise -1))))))

=⇒ negative

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "reraised ") (write x) (newline)

(k ’zero))

(lambda ()

(guard (condition

((positive? condition) ’positive)

((negative? condition) ’negative))

(raise 0))))))

prints: reraised 0

=⇒ zero

(guard (condition

((assq ’a condition) => cdr)

((assq ’b condition)))

(raise (list (cons ’a 42))))

=⇒ 42

(guard (condition

((assq ’a condition) => cdr)

((assq ’b condition)))

(raise (list (cons ’b 23))))

=⇒ (b . 23)

(with-exception-handler

(lambda (x)

42)

(lambda ()

(+ (raise-continuable #f)

23))) =⇒ 65

14.2. Conditions

The section describes’s Scheme (r6rs conditions) li-
brary for creating and inspecting condition types and val-
ues. A condition value encapsulates information about an
exceptional situation, or exception. Scheme also defines a
number of basic condition types.

Note: This specification follows SRFI 35 [30].

Scheme conditions provides two mechanisms to enable
communication about exceptional situation: subtyping
among condition types allows handling code to determine
the general nature of an exception even though it does not
anticipate its exact nature, and compound conditions allow
an exceptional situation to be described in multiple ways.

Rationale: Conditions are values that communicate informa-

tion about exceptional situations between parts of a program.

Code that detects an exception may be in a different part of the

program than the code that handles it. In fact, the former may

have been written independently from the latter. Consequently,

to facilitate effective handling of exceptions, conditions must

communicate as much information as possible as accurately as

possible, and still allow effective handling by code that did not

precisely anticipate the nature of the exception that occurred.
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14.2.1. Condition objects

Conditions are objects with named fields. Each condition
belongs to one or more condition types. Each condition
type specifies a set of field names. A condition belonging to
a condition type includes a value for each of the type’s field
names. These values can be extracted from the condition
by using the appropriate field name.

There is a tree of condition types with the distinguished
&condition as its root. All other condition types have a
parent condition type.

A condition belonging to several condition types with a
common supertype may have distinct values for the super-
type’s fields for each type. The type used to access a field
determines which of the values is returned. The program
can extract each of these field values separately.

(make-condition-type id parent field-names)
procedure

Returns a new condition type. Id must be a symbol that
serves as a symbolic name for the condition type. Parent
must itself be a condition type. Field-names must be a
list of symbols. It identifies the fields of the conditions
associated with the condition type.

Field-names must be disjoint from the field names of parent
and its ancestors.

(condition-type? thing) procedure

Returns #t if thing is a condition type, and #f otherwise

(make-condition type field-name obj . . . ) procedure

Returns a condition object belonging to condition type
type. Field-name must be a field name. There must be
a pair of a field-name and an obj for each field of type and
its direct and indirect supertypes. The make-condition
procedure returns the condition value, with the argument
values associated with their respective fields.

(condition? obj) procedure

Returns #t if obj is a condition object, and #f otherwise.

(condition-has-type? condition condition-type)
procedure

The condition-has-type? procedure tests if condition
condition belongs to condition type condition-type. It re-
turns #t if any of condition’s types includes condition-type,
either directly or as an ancestor, and #f otherwise.

(condition-ref condition field-name) procedure

Field-name must be a symbol. Moreover, condition must
belong to a condition type which has a field name called

field-name, or one of its (direct or indirect) supertypes
must have the field. The condition-ref procedure re-
turns the value associated with field-name.

(make-compound-condition condition1 condition2 . . . )
procedure

Returns a compound condition belonging to all condition
types that the conditions belong to.

The condition-ref procedure, when applied to a com-
pound condition returns the value from the first of the
conditions that has such a field.

(extract-condition condition condition-type)
procedure

Condition must be a condition belonging to condition-type.
The extract-condition procedure returns a condition of
condition type condition-type with the field values specified
by condition.

If condition is a compound condition, extract-condition
extracts the field values from the subcondition belong-
ing to condition-type that appeared first in the call to
make-compound-condition that created the condition.
The returned condition may be newly created; it is pos-
sible for

(let* ((&c (make-condition-type

’c &condition ’()))

(c0 (make-condition &c))

(c1 (make-compound-condition c0)))

(eq? c0 (extract-condition c1 &c)))

to return #f.

(define-condition-type 〈condition-type〉 〈supertype〉
syntax

〈predicate〉
〈field-spec1〉 . . . )

Syntax: 〈Condition-type〉, 〈supertypes〉, and 〈predicate〉
must all be identifiers. Each 〈field-spec〉 must be of the
form

(〈field〉 〈accessor〉)

where both 〈field〉 and 〈accessor〉 must be identifiers.

Semantics: The define-condition-type form defines an
identifier 〈condition-type〉 to some value describing a new
condition type. 〈Supertype〉 must be the name of a previ-
ously defined condition type.

The define-condition-type form also defines 〈predicate〉
to a predicate that identifies conditions associated with
that type, or with any of its subtypes.

The define-condition-type form defines each 〈accessor〉
to a procedure which extracts the value of the named field
from a condition associated with this condition type.
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(condition 〈type-field-binding1〉 . . . ) syntax

Returns a condition value. Each 〈type-field-binding〉 must
be of the form

(〈condition-type〉 〈field-binding1〉 . . . )

Each 〈field-binding〉 must be of the form

(〈field〉 〈expression〉)

where 〈field〉 is a field identifier from the definition of
〈condition-type〉. x The 〈expression〉 are evaluated in some
unspecified order; their values can later be extracted from
the condition object via the accessors of the associated con-
dition types or their supertypes.

The condition returned by condition is created by a call of
form

(make-compound-condition

(make-condition 〈condition-type〉 ’〈field-name〉 〈value〉 . . . )
. . . )

with the condition types retaining their order from the
condition form. The field names and values are dupli-
cated as necessary as described below.

Each 〈type-field-binding〉 must contain field bindings for all
fields of 〈condition-type〉 without duplicates. There is an
exception to this rule: if a field binding is missing, and the
field belongs to a supertype shared with one of the other
〈type-field-binding〉 subforms, then the value defaults to
that of the first such binding in the condition form.

&condition condition type

This is the root of the entire condition type hierarchy. It
has a no fields.

(define-condition-type &c &condition

c?

(x c-x))

(define-condition-type &c1 &c

c1?

(a c1-a))

(define-condition-type &c2 &c

c2?

(b c2-b))

(define v1 (make-condition &c1 ’x "V1" ’a "a1"))

(c? v1) =⇒ #t

(c1? v1) =⇒ #t

(c2? v1) =⇒ #f

(c-x v1) =⇒ "V1"

(c1-a v1) =⇒ "a1"

(define v2 (condition (&c2

(x "V2")

(b "b2"))))

(c? v2) =⇒ #t

(c1? v2) =⇒ #f

(c2? v2) =⇒ #t

(c-x v2) =⇒ "V2"

(c2-b v2) =⇒ "b2"

(define v3 (condition (&c1

(x "V3/1")

(a "a3"))

(&c2

(b "b3"))))

(c? v3) =⇒ #t

(c1? v3) =⇒ #t

(c2? v3) =⇒ #t

(c-x v3) =⇒ "V3/1"

(c1-a v3) =⇒ "a3"

(c2-b v3) =⇒ "b3"

(define v4 (make-compound-condition v1 v2))

(c? v4) =⇒ #t

(c1? v4) =⇒ #t

(c2? v4) =⇒ #t

(c-x v4) =⇒ "V1"

(c1-a v4) =⇒ "a1"

(c2-b v4) =⇒ "b2"

(define v5 (make-compound-condition v2 v3))

(c? v5) =⇒ #t

(c1? v5) =⇒ #t

(c2? v5) =⇒ #t

(c-x v5) =⇒ "V2"

(c1-a v5) =⇒ "a3"

(c2-b v5) =⇒ "b2"

14.3. Standard condition types

&message condition type
(message-condition? obj) procedure
(condition-message condition) procedure

This condition type could be defined by

(define-condition-type &message &condition

message-condition?

(message condition-message))

It carries a message further describing the nature of the
condition to humans.

&warning condition type
(warning? obj) procedure

This condition type could be defined by

(define-condition-type &warning &condition

warning?)
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This type describes conditions that can safely be ignored.

&serious condition type
(serious-condition? obj) procedure
This condition type could be defined by

(define-condition-type &serious &condition

serious-condition?)

This type describes conditions serious enough that they
cannot safely be ignored. This condition type is primarily
intended as a supertype of other condition types.

&error condition type
(error? obj) procedure
This condition type could be defined by

(define-condition-type &error &serious

error?)

This type describes errors, typically caused by something
that has gone wrong in the interaction of the program with
the external world or the user.

&violation condition type
(violation? obj) procedure
This condition type could be defined by

(define-condition-type &violation &serious

violation?)

This type describes violations of the language standard or a
library standard, typically caused by a programming error.

&non-continuable condition type
(non-continuable? obj) procedure
This condition type could be defined by

(define-condition-type &non-continuable &violation

non-continuable?)

This type denotes that an exception handler invoked via
raise returned.

&implementation-restriction condition type
(implementation-restriction? obj) procedure
This condition type could be defined by

(define-condition-type &implementation-restriction

&violation

implementation-restriction?)

This type describes a violation of an implementation re-
striction allowed by the specification, such as the absence of
representations for NaNs and infinities. (See section 16.4.)

&defect condition type
(defect? obj) procedure
This condition type could be defined by

(define-condition-type &defect &violation

defect?)

This type describes defects in the program.

&lexical condition type
(lexical-violation? obj) procedure

This condition type could be defined by

(define-condition-type &lexical &defect

lexical-violation?)

This type describes syntax violations at the level of the
read syntax.

&syntax condition type
(syntax-violation? obj) procedure

This condition type could be defined by

(define-condition-type &syntax &violation

syntax-violation?

(form syntax-violation-form)

(subform syntax-violation-subform))

This type describes syntax violations at the level of the li-
brary syntax. The form field contains the erroneous syntax
object or a datum representing that code of the erroneous
form. The subform field may contain an optional syntax
object or datum within the erroneous form that more pre-
cisely locates the violation. It can be #f to indicate the
absence of more precise information.

&undefined condition type
(undefined-violation? obj) procedure

This condition type could be defined by

(define-condition-type &undefined &defect

undefined-violation?)

This type describes unbound identifiers in the program.

&contract condition type
(contract-violation? obj) procedure

This condition type could be defined by

(define-condition-type &contract &defect

contract-violation?)

This type describes an invalid call to a procedure, either
passing an invalid number of arguments, or passing an ar-
gument of the wrong type.

&irritants condition type
(irritants-condition? obj) procedure
(condition-irritants condition) procedure

This condition type could be defined by



78 Revised5.91 Scheme

(define-condition-type &irritants &condition

irritants-condition?

(irritants condition-irritants))

The irritants field should contain a list of objects. This
condition provides additional information about a condi-
tion, typically the argument list of a procedure that de-
tected an exception. Conditions of this type are created
by the error and contract-violation procedures of sec-
tion 9.17.

&who condition type
(who-condition? obj) procedure
(condition-who condition) procedure

This condition type could be defined by

(define-condition-type &who &condition

who-condition?

(who condition-who))

The who field should contain a symbol or string identifying
the entity reporting the exception. Conditions of this type
are created by the error and contract-violation proce-
dures (section 9.17), and the syntax-violation procedure
(section 17.9).

15. I/O

This chapter describes Scheme’s libraries for performing
input/output:

• The (r6rs i/o primitive) library (section 15.2) is a
simple, primitive I/O subsystem providing unbuffered
I/O. Its primary purpose is to allow programs to im-
plement custom data sources and sinks.

• The (r6rs i/o ports) library (section 15.3) is an
I/O layer for conventional, imperative buffered input
and output with mixed text and binary data.

• The (r6rs i/o simple) library (section 15.4) is a
convenience library atop the (r6rs i/o ports) li-
brary for textual I/O, compatible with the traditional
Scheme I/O procedures [28].

Section 15.1 defines a condition-type hierarchy common
to the (r6rs i/o primitive) and (r6rs i/o ports) li-
braries.

15.1. Condition types

In exceptional situations arising from “I/O errors,” the
procedures described in this chapter raise an exception
with condition type &i/o. Except where explicitly spec-
ified, there is no guarantee that the raised condition ob-
ject contains all the information that would be applicable.

It is recommended, however, that an implementation pro-
vide all information about an exceptional situation in the
condition object that is available at the place where it is
detected.

The condition types and corresponding predicates and ac-
cessors are exported by both the (r6rs i/o primitive)
and (r6rs i/o simple) libraries.

&i/o condition type
(i/o-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o &error

i/o-error?)

This is a supertype for a set of more specific I/O errors.

&i/o-read condition type
(i/o-read-error? obj) procedure

(define-condition-type &i/o-read &i/o

i/o-read-error?)

This condition type describes read errors that occurred
during an I/O operation.

&i/o-write condition type
(i/o-write-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-write &i/o

i/o-write-error?)

This condition type describes write errors that occurred
during an I/O operation.

&i/o-invalid-position condition type
(i/o-invalid-position-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-invalid-position &i/o

i/o-invalid-position-error?

(position i/o-error-position))

This condition type describes attempts to set the file po-
sition to an invalid position. The value of the position
field is the file position that the program intended to set.
This condition describes a range error, but not a contract
violation.

&i/o-filename condition type
(i/o-filename-error? obj) procedure
(i/o-error-filename condition) procedure

This condition type could be defined by
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(define-condition-type &i/o-filename &i/o

i/o-filename-error?

(filename i/o-error-filename))

This condition type describes an I/O error that occurred
during an operation on a named file. Condition objects
belonging to this type must specify a file name in the
filename field.

&i/o-file-protection condition type
(i/o-file-protection-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-protection

&i/o-filename

i/o-file-protection-error?)

A condition of this type specifies that an operation tried
to operate on a named file with insufficient access rights.

&i/o-file-is-read-only condition type
(i/o-file-is-read-only-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-is-read-only

&i/o-file-protection

i/o-file-is-read-only-error?)

A condition of this type specifies that an operation tried
to operate on a named read-only file under the assumption
that it is writeable.

&i/o-file-already-exists condition type
(i/o-file-already-exists-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-already-exists

&i/o-filename

i/o-file-already-exists-error?)

A condition of this type specifies that an operation tried
to operate on an existing named file under the assumption
that it does not exist.

&i/o-file-exists-not condition type
(i/o-exists-not-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-exists-not

&i/o-filename

i/o-file-exists-not-error?)

A condition of this type specifies that an operation tried to
operate on an non-existent named file under the assump-
tion that it exists.

15.2. Primitive I/O

This section defines the (r6rs i/o primitive) library, a
simple, primitive I/O subsystem. It provides unbuffered
I/O, and is close to what a typical operating system of-
fers. Thus, its interface is suitable for implementing high-
throughput and zero-copy I/O.

This library also allows programs to implement custom
data sources and sinks via a simple interface. It handles
only blocking-I/O.

15.2.1. File names

Some of the procedures described in this chapter accept a
file name as an argument. Valid values for such a file name
include strings that name a file using the native notation
of filesystem paths on the implementation’s underlying op-
erating system. A filename parameter name means that
the corresponding argument must be a file name.

Some implementations will provide a more abstract repre-
sentation of file names. Indeed, most operating systems do
not use strings for representing file names, but rather byte
or word sequences. Moreover, the string notation is diffi-
cult to manipulate, and it is not portable across operating
systems.

15.2.2. File options

When opening a file, the various procedures in this library
accept a file-options object that encapsulates flags to
specify how the file is to be opened. A file-options
object is an enum-set (see chapter 19) over the symbols
constituting valid file options. A file-options parameter
name means that the corresponding argument must be a
file-options object.

(file-options 〈file-options name〉 . . . ) syntax

Each 〈file-options name〉 must be an 〈identifier〉. The
file-options syntax returns a file-options object that en-
capsulates the specified options. The following options (all
affecting output only) have predefined meaning:

• create create file if it does not already exist

• exclusive an exception with condition type
&i/o-file-already-exists is raised if this op-
tion and create are both set and the file already
exists

• truncate file is truncated

〈Identifiers〉s other than those listed above may be used
as 〈file-options name〉s; they have implementation-specific
meaning, if any.
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The file-options object returned by (file-options) spec-
ifies, when supplied to an operation opening a file for out-
put, that the file must exist (otherwise an exception with
condition type &i/o-file-exists-not is raised) and its
data is unchanged by the operation.

Rationale: The flags specified above represent only a com-

mon subset of meaningful options on popular platforms. The

file-options form does not restrict the 〈file-options name〉s so

that implementations can extend the file options by platform-

specific flags.

15.2.3. Readers and writers

The objects representing input data sources are called read-
ers, and those representing output data sinks are called
writers. Both readers and writer are unbuffered, and they
operate purely on binary data. Although some reader and
writer objects might conceivably have something to do with
files or devices, programmers should never assume it. A
reader parameter name means that the corresponding ar-
gument must be a reader. A writer parameter name means
that the corresponding argument must be a writer.

The (r6rs i/o primitive) library has one condition type
specific to readers and writers:

&i/o-reader/writer condition type
(i/o-reader-writer-error? obj) procedure
(i/o-error-reader/writer condition) procedure

This condition type could be defined by

(define-condition-type &i/o-reader/writer &i/o

i/o-reader/writer-error?

(reader/writer i/o-error-reader/writer))

This condition type allows specifying the particular reader
or writer with which an I/O error is associated. Condi-
tions raised by the procedures exported by the (r6rs i/o
primitive) may include an &i/o-reader/writer condi-
tion, but they are not required to do so.

15.2.4. I/O buffers

(make-i/o-buffer size) procedure

Size must be a non-negative exact integer. The
make-i/o-buffer procedure creates a bytes object of size
size with undefined contents. Callers of the procedures
from the (r6rs i/o primitive) library are encouraged
to use bytes objects created by make-i/o-buffer, because
they might have alignment and placement characteristics
that make reader-read! and writer-write! more effi-
cient. (Those procedures are still required to work on reg-
ular bytes objects, however.)

15.2.5. Readers

The purpose of reader objects is to represent the output
of arbitrary algorithms in a form susceptible to imperative
I/O.

(reader? obj) procedures

Returns #t if obj is a reader, otherwise returns #f.

(make-simple-reader id descriptor procedure
chunk-size read! available get-position
set-position! end-position close)

Returns a reader object. Id must be a string nam-
ing the reader, provided for informational purposes only.
Descriptor may be any object; the procedures described
in this section do not use it internally for any purpose,
but descriptor can be extracted from the reader object via
reader-descriptor. Thus, descriptor can be used to keep
the internal state of certain kinds of readers.

Chunk-size must be a positive exact integer, and it repre-
sents a recommended efficient size for the read operations
on this reader. This integer is typically the block size of
the buffers of the operating system. As such, it is only a
hint for clients of the reader—calls to the read! procedure
(see below) may specify a different read count.

The remaining arguments are procedures. For each such
procedure, an operation exists that calls that procedure.
For example, the reader-read! operation, when called on
a simple reader, calls its read! procedure. It is encouraged
that these procedures check that their arguments are of the
appropriate types. The operations that call them perform
no checking beyond ensuring that their reader arguments
are simple readers, and, if applicable, that the reader sup-
ports the operation. These procedures must raise excep-
tions with condition types as specified above when they
encounter an exceptional situation. When they do not, the
effects are unspecified.

Get-position, set-position! , and end-position may be omit-
ted, in which case the corresponding arguments must be
#f.

• (read! bytes start count)

Start and count must be non-negative exact integers.
The read! procedure reads up to count bytes from the
reader and writes them into bytes starting at index
start. Bytes must have size at least start + count .
The result is the number of bytes read as an exact
integer. The result is 0 if read! encounters an end of
file, or if count is 0. If count is positive, read! blocks
until at least one byte has been read or until it has
encountered an end of file.



15. I/O 81

Bytes may or may not be a bytes object returned by
make-i/o-buffer.

Count may or may not be the same as the chunk size
of the reader.

• (available)

Returns an estimate of the total number of bytes left in
the reader. The result is either an exact integer, or #f
if no such estimate is possible. There is no guarantee
that this estimate has any specific relationship to the
true number of available bytes.

• (get-position)

When present, get-position returns the current posi-
tion in the reader as an exact integer, counting the
number of bytes since the beginning of the source.
(Ends of file do not count as bytes.)

• (set-position! pos)

When present, set-position! moves to position pos
(which must be a non-negative exact integer) in the
reader.

• (end-position)

When present, end-position returns the position in the
reader of the next end of file, without changing the
current position.

• (close)

Marks the reader as closed, performs any necessary
cleanup, and releases the resources associated with the
reader. Further operations on the reader must raise an
exception with condition type &contract.

(reader-id reader)

Returns a string naming the reader, provided for infor-
mational purposes only. For a file reader returned by
open-file-reader or open-file-reader+writer, the re-
sult is a string representation of the file name.

For a reader created by make-simple-reader, the result
is the value that was supplied as the id argument to
make-simple-reader.

(reader-descriptor reader) procedure

For a reader created by make-simple-reader, the result is
the value that was supplied as the descriptor argument to
make-simple-reader.

For all other readers, the result is an unspecified value.

(reader-chunk-size reader) procedure

Returns a positive exact integer that represents a recom-
mended efficient size of the read operations on this reader.
The result is typically the block size of the buffers of the
operating system. As such, it is only a hint for clients of the
reader—calls to the reader-read! procedure (see below)
may specify a different read count.

For a reader created by make-simple-reader, the result is
the value that was supplied as the chunk-size argument to
make-simple-reader.

(reader-read! reader bytes start count) procedure

Start and count must be non-negative exact integers.
Bytes must have at least start + count elements. The
reader-read! procedure reads up to count bytes from the
reader and writes them into bytes starting at index start .
The result is the number of bytes read as an exact inte-
ger. The result is 0 if reader-read! encounters an end of
file, or if count is 0. If count is positive, reader-read!
blocks until at least one byte has been read or until it has
encountered end of file.

Bytes may or may not be a bytes object returned by
make-i/o-buffer, but reader-read! may operate more
efficiently if it is.

Count may or may not be the same as the chunk size of the
reader, but reader-read! may operate more efficiently if
it is.

For a reader created by make-simple-reader,
reader-read! tail-calls the read! procedure of reader with
the remaining arguments.

(reader-available reader) procedure

Returns an estimate of the total number of available bytes
left in the stream. The result is either an exact integer, or
#f if no such estimate is possible. There is no guarantee
that this estimate has any specific relationship to the true
number of available bytes.

For a reader created by make-simple-reader,
reader-available tail-calls the available procedure
of reader.

(reader-has-get-position? reader) procedure
(reader-get-position reader) procedure

The reader-has-get-position? procedure #t if
reader supports the reader-get-position pro-
cedure, and #f otherwise. For a simple reader,
reader-has-get-position? returns #t if it has a
get-position procedure.

When reader-has-get-position returns #t for reader,
reader-get-position returns the current position in the
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byte stream as an exact integer counting the number of
bytes since the beginning of the stream. Otherweise, an
exception with condition type &contract is raised.

For a reader created by make-simple-reader,
reader-get-position tail-calls the get-position pro-
cedure of reader .

(reader-has-set-position!? reader) procedure
(reader-set-position! reader pos) procedure

Pos must be a non-negative exact integer.

The reader-has-set-position!? procedure #t if
reader supports the reader-set-position! pro-
cedure, and #f otherwise. For a simple reader,
reader-has-set-position!? returns #t if it has a
set-position! procedure.

When reader-has-set-position!? returns #t for reader ,
reader-set-position! moves to position pos in the
stream. Otherwise, an exception with condition type
&contract is raised.

For a reader created by make-simple-reader,
reader-set-position! tail-calls the set-position!
procedure of reader with the pos argument. For readers
not created by make-simple-reader, the result values are
unspecified.

(reader-has-end-position? reader) procedure
(reader-end-position reader) procedure

The reader-has-end-position? procedure #t if
reader supports the reader-end-position pro-
cedure, and #f otherwise. For a simple reader,
reader-has-end-position? returns #t if it has a
end-position procedure.

When reader-has-end-position? returns #t for reader ,
reader-end-position returns the position in the byte
stream of the next end of file, without changing the cur-
rent position. Otherwise, an exception with condition type
&contract is raised.

For a reader created by mmake-simple-reader,
reader-end-position tail-calls the end-position pro-
cedure of reader .

(reader-close reader) procedure

Marks reader as closed, performs any necessary cleanup,
and releases the resources associated with the reader. Fur-
ther operations on the reader must raise an exception with
condition type &contract.

For a reader created by make-simple-reader,
reader-close tail-calls the close procedure of reader. For
all other readers, the return values are unspecified.

(open-bytes-reader bytes) procedure

Returns a bytes reader that uses bytes, a bytes ob-
ject, as its contents. The result reader supports
the reader-get-position, reader-set-position!, and
reader-end-position operations. The effect of modify-
ing the contents of bytes, after open-bytes-reader has
been called, on the reader is unspecified.

(open-file-reader filename) procedure
(open-file-reader filename file-options) procedure

Returns a reader connected to the file named by filename.
The file-options object, which may determine various as-
pects of the returned reader (see section 15.2.2) defaults
to (file-options) if not present. The result reader
supports reader-get-position, reader-set-position!,
and reader-end-position operations.

(standard-input-reader) procedure

Returns a reader connected to the standard input. The
meaning of “standard input” is implementation-dependent.

15.2.6. Writers

The purpose of writer objects is to represent the input of
arbitrary algorithms in a form susceptible to imperative
I/O.

(writer? obj) procedure

Returns #t if obj is a writer, otherwise returns #f.

(make-simple-writer id descriptor procedure
chunk-size write! get-position set-position!
end-position close)

Returns a writer object. Id must be a string nam-
ing the writer, provided for informational purposes only.
Descriptor may be any object; the procedures described
in this section do not use it internally for any purpose,
but descriptor can be extracted from the writer object via
writer-descriptor. Thus, descriptor can be used to keep
the internal state of certain kinds of writers.

Chunk-size must be a positive exact integer, and it is the
recommended efficient size of the write operations on this
writer. As such, it is only a hint for clients of the writer—
calls to the write! procedure (see below) may specify a
different write count.

The remaining arguments are procedures. For each such
procedure, an operation exists that calls that procedure.
For example, the writer-write! operation, when called on
a simple writer, calls its write! procedure. It is encouraged
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that these procedures check that their arguments are of the
appropriate types. The operations that call them perform
no checking beyond ensuring that their writer arguments
are indeed writers, and, if applicable, that the writer sup-
ports the operation. These procedures must raise excep-
tions with condition types as specified above when they
encounter an exceptional situation. When they do not, the
effects are unspecified.

Get-position, set-position! , and end-position may be omit-
ted, in which case the corresponding arguments must be
#f.

• (write! bytes start count)

Start and count must be non-negative exact integers.
The write! procedure writes up to count bytes in bytes
object bytes starting at index start . Before writing
any bytes, write! blocks until it can write at least
one byte. The result is the number of bytes actually
written as a positive exact integer.

Bytes may or may not be a bytes object returned by
make-i/o-buffer.

Count may or may not be the same as the chunk size
of the reader.

• (get-position)

When present, get-position returns the current posi-
tion in the byte stream as an exact integer counting
the number of bytes since the beginning of the stream.

• (set-position! pos)

When present, set-position! moves to position pos
(which must be a non-negative exact integer) in the
stream.

• (end-position)

When present, end-position returns the byte position
of the next end of file without changing the current
position.

• (close)

Marks the writer as closed, performs any necessary
cleanup, and releases the resources associated with the
writer. Further operations on the writer must raise an
exception with condition type &contract.

(writer-id writer) procedure

Returns string naming the writer, provided for infor-
mational purposes only. For a file writer returned by
open-file-writer or open-file-reader+writer, the re-
sult is a string representation of the file name.

For a writer created by make-simple-writer, the result is
the value of the id field of the argument writer.

(writer-descriptor writer) procedure

For a writer created by make-simple-writer,
write-descriptor returns the value of the descriptor
field of the argument writer.

For all other writers, the result is an unspecified value.

(writer-chunk-size writer) procedure

Returns a positive exact integer, and is the recommended
efficient size of the write operations on this writer. As
such, it is only a hint for clients of the writer—calls to
writer-write! (see below) may specify a different write
count.

For a writer created by make-simple-writer, the result is
the value of the chunk-size field of the argument writer.

(writer-write! writer bytes start count) procedure

Start and count must be non-negative exact integers.
Bytes must have at least start + count elements. The
writer-write! procedure writes up to count bytes in bytes
object bytes starting at index start . Before writing any
bytes, write-write! blocks until it can write at least one
byte. The result is the number of bytes actually written as
a positive exact integer.

Bytes may or may not be a bytes object returned by
make-i/o-buffer, but writer-write! may operate more
efficiently if it is.

Count may or may not be the same as the chunk size of the
reader, but writer-write! may operate more efficiently if
it is.

For a writer created by make-simple-writer, writer-write!
tail-calls the write! procedure of writer with the remain-
ing arguments. For all other writers, the result values are
unspecified.

(writer-has-get-position? writer) procedure
(writer-get-position writer) procedure

The writer-has-get-position? procedure #t if
writer supports the writer-get-position pro-
cedure, and #f otherwise. For a simple writer,
writer-has-get-position? returns #t if it has a
get-position procedure.

When writer-has-get-position? returns #t for writer ,
writer-get-position returns the current position in the
byte stream as an exact integer counting the number of
bytes since the beginning of the stream. Otherwise, an
exception with condition type &contract is raised.

For a writer created by make-simple-writer,
writer-get-position calls the get-position procedure of
writer .
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(writer-has-set-position!? writer) procedure
(writer-set-position! writer pos) procedure

Pos must be a non-negative exact integer.

The writer-has-set-position!? procedure #t if
writer supports the writer-set-position! pro-
cedure, and #f otherwise. For a simple writer,
writer-has-set-position!? returns #t if it has a
set-position! procedure.

When writer-has-set-position!? returns #t for writer ,
writer-set-position! moves to position pos (which must
be a non-negative exact integer) in the stream. Otherwise,
an exception with condition type &contract is raised.

For a writer created by make-simple-writer,
writer-set-position! calls the set-position! proce-
dure of writer with the pos argument. For writers not
created by make-simple-reader, the result values are
unspecified.

(writer-has-end-position? writer) procedure
(writer-end-position writer) procedure

The writer-has-end-position? procedure #t if
writer supports the writer-end-position pro-
cedure, and #f otherwise. For a simple writer,
writer-has-end-position? returns #t if it has a
end-position procedure.

When writer-has-end-position? returns #t for writer,
writer-end-position returns the byte position of the
next end of file, without changing the current position.
Otherwise, an exception with condition type &contract is
raised.

For a writer created by make-simple-writer,
writer-end-position calls the end-position procedure of
writer .

(writer-close writer) procedure

Marks the writer as closed, performs any necessary
cleanup, and releases the resources associated with the
writer. Further operations on the writer must raise an
exception with condition type &contract.

For a writer created by make-simple-writer, calls the
close procedure of writer . For all other writers, the re-
sult values are unspecified.

(open-bytes-writer) procedure

Returns a bytes writer that can yield everything writ-
ten to it as a bytes object. The result writer supports
the writer-get-position, writer-set-position!, and
writer-end-position operations. operations.

(writer-bytes writer) procedure

The writer argument must be a bytes writer. The
writer-bytes procedure returns a bytes object contain-
ing the data written to writer in sequence. Doing this in
no way invalidates the writer or change its store. The effect
of modifying the contents of the returned bytes object on
writer is unspecified.

(clear-writer-bytes! writer) procedure

Writer must be a bytes writer. The clear-writer-bytes!
procedure clears the bytes object associated with writer ,
associating it with an empty bytes object.

(open-file-writer filename) procedure
(open-file-writer filename file-options) procedure

Returns a writer connected to the file named by filename.
The file-options object, which determines various aspects
of the returned writer (see section 15.2.2) defaults to
(file-options) if not present. The result writer supports
the writer-get-position, writer-set-position!, and
writer-end-position operations.

(standard-output-writer) procedure

Returns a writer connected to the standard output.
The meaning of “standard output” is implementation-
dependent.

(standard-error-writer) procedure

Returns a writer connected to the standard error. The
meaning of “standard error” is implementation-dependent.

15.2.7. Opening files for reading and writing

(open-file-reader+writer filename) procedure
(open-file-reader+writer filename file-options)

procedure

Returns two values: a reader and a writer connected
to the file named by filename. The file-options object,
which determines various aspects of the returned writer
and possibly the reader (see section 15.2.2), defaults to
(file-options) if not present. The result reader sup-
ports the reader-get-position, reader-set-position!,
reader-end-position, and the result writer sup-
ports the writer-get-position, writer-set-position!,
writer-end-position operations.

Note: The open-file-reader+writer procedure enables

opening a file for simultaneous input and output in environ-

ments where it is not possible to call open-file-reader and

open-file-writer on the same file.
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15.2.8. Examples

; Algorithmic reader producing an infinite

; stream of blanks:

(define (make-infinite-blanks-reader)

(make-simple-reader

"<blanks, blanks, and more blanks>"

#f

4096

(lambda (bytes start count)

(let loop ((index 0))

(if (>= index count)

index

(begin

(bytes-u8-set! bytes (+ start index) 32)

(loop (+ 1 index))))))

(lambda ()

1000) ; some number

#f #f #f

unspecific))

; Sample implementation of bytes writer

(define-record-type (buffer

make-buffer buffer?)

(fields (mutable bytes

buffer-bytes set-buffer-bytes!)

(mutable size

buffer-set-size set-buffer-size!)))

(define (open-bytes-writer)

(let ((buffer

(make-buffer (make-bytes 512) 0))

(pos 0))

(define (ensure-open)

(if (not buffer)

(raise (condition

(&message

(message "bytes writer closed"))

(&contract)

(&i/o-reader/writer

(reader/writer writer))))))

(define writer

(make-writer

"<bytes writer>"

buffer

3

(lambda (bytes start count)

(ensure-open)

;; resize buffer if necessary

(let loop ((length

(bytes-length

(buffer-bytes buffer))))

(cond

((> (+ pos count) length)

(loop (* 2 length)))

((> length (bytes-length (car buffer)))

(let ((new-buffer (make-bytes length)))

(bytes-copy! (buffer-bytes buffer) 0

new-buffer 0

(buffer-size buffer))

(set-buffer-bytes! buffer new-buffer)))))

(bytes-copy! bytes start

(buffer-bytes buffer) pos

count)

(set-buffer-size!

buffer

(max (buffer-size buffer) (+ pos count)))

(set! pos (+ pos count))

count)

(lambda ()

(ensure-open)

pos)

(lambda (new-pos)

(ensure-open)

(if (<= new-pos (buffer-size buffer))

(set! pos new-pos)

(raise

(condition

(&message

(message "invalid position"))

(&i/o-invalid-position

(position new-pos))))))

(lambda ()

(ensure-open)

(buffer-size buffer))

(lambda ()

(set-buffer-bytes! buffer #f))))

writer))

(define (writer-bytes writer)

(let* ((buffer (writer-descriptor writer))

(target (make-bytes (buffer-size buffer))))

(bytes-copy! (buffer-bytes buffer) 0

target 0

(buffer-size buffer))

target))

15.3. Port I/O

The (r6rs i/o ports) library defines an I/O layer for
conventional, imperative buffered input and output with
mixed text and binary data. A port represents a buffered
access object for a data sink or source or both simulta-
neously. The library allows creating ports from arbitrary
input sources and sinks represented as readers and writers
(see section 15.2), but does not require that all ports be
built from readers and writers.

The (r6rs i/o ports) library distinguishes between in-
put ports and output ports. An input port is a source for
data, whereas an output port is a sink for data. A port
may be both an input port and an output port; such a
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port typically provides simultaneous read and write access
to a file or other data.

This section uses the input-port , output-port , port param-
eter names for arguments that must be input ports (or
combined input/output ports), output ports (or combined
input/output ports), or any kind of port.

15.3.1. Condition type

This library introduces the following condition type:

&i/o-port condition type
(i/o-port-error? obj) procedure
(i/o-error-port condition) procedure

This condition type could be defined by

(define-condition-type &i/o-port &i/o

i/o-port-error?

(port i/o-error-port))

This condition type allows specifying with what particular
port an I/O error is associated. Except for condition ob-
jects provided for encoding and decoding errors, conditions
raised by procedures may include an &i/o-port-error
condition, but are not required to do so.

15.3.2. Buffer modes

Each output port has an associated buffer mode that de-
fines when an output operation flushes the buffer associ-
ated with the output port. The possible buffer modes are
the symbols none for no buffering, line for flushing upon
line feeds and line separators (U+2028), and block for ar-
bitrary buffering. This section uses the parameter name
buffer-name for arguments that must be buffer-mode sym-
bols.

(buffer-mode 〈name〉) syntax

〈Name〉 must be one of the 〈identifier〉s none, line, or
block. The result is the corresponding symbol, denoting
the associated buffer mode.

It is a syntax violation if 〈name〉 is not one of the valid
identifiers.

(buffer-mode? obj) procedure

Returns #t if the argument is a valid buffer-mode symbol,
#f otherwise.

15.3.3. Text transcoders

Several different Unicode encoding schemes describe stan-
dard ways to encode characters and strings as byte se-
quences and to decode those sequences [51]. Within this
document, a codec is a Scheme object that represents a
Unicode or similar encoding scheme.

The text transcoders of this document generalize codecs
to deal with common end-of-line conventions and different
error-handling modes.

A transcoder is an opaque object that represents some
specific bidirectional (but not necessarily lossless) trans-
lation between byte sequences and Unicode characters and
strings. The transcoder specifies how procedures that per-
form textual input are to interpret input bytes as charac-
ters or strings. The transcoder also specifies how proce-
dures that perform textual output are to translate charac-
ters into bytes. Moreover, the transcoder specifies a mode
for handling encoding or decoding errors.

A transcoder parameter name means that the correspond-
ing argument must be a transcoder.

(utf-8-codec) procedure
(latin-1-codec) procedure
(utf-16le-codec) procedure
(utf-16be-codec) procedure
(utf-32le-codec) procedure
(utf-32be-codec) procedure

These are predefined codecs for the UTF-8, ISO8859-1,
UTF-16LE, UTF-16BE, UTF32-LE, and UTF-32BE en-
coding schemes.

A call to any of these procedures returns a value that is
equal in the sense of eqv? to the result of any other call to
the same procedure.

(eol-style name) syntax

If name is one of the 〈identifier〉s lf, cr, crlf, or ls, then
the form evaluates to the corresponding symbol. If name
is not one of these identifiers, the effect of evaluating this
expression is implementation-dependent.

Rationale: End-of-line styles other than those listed might

become commonplace in the future.

(native-eol-style) procedure

Returns the default end-of-line style of the underlying plat-
form, e.g. lf on Unix and crlf on Windows.

&i/o-decoding condition type
(i/o-decoding-error? obj) procedure
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(define-condition-type &i/o-decoding &i/o-port

i/o-decoding-error?

(transcoder i/o-decoding-error-transcoder))

An exception with this type is raised when one of the oper-
ations for textual output to a port encounters a character
not supported by the codec of the specified transcoder. The
transcoder field contains the transcoder specified with the
operation.

Exceptions of this type raised by the operations described
in this section are continuable. When such an exception is
raised, the port’s position is at the beginning of the invalid
encoding. The exception handler must return a charac-
ter or string representing the decoded text starting at the
port’s current position, and the exception handler must
update the port’s position to point past the error.

&i/o-encoding condition type
(i/o-encoding-error? obj) procedure
(i/o-encoding-error-char condition) procedure
(i/o-encoding-error-transcoder condition)

procedure

This condition type could be defined by

(define-condition-type &i/o-encoding &i/o-port

i/o-encoding-error?

(char i/o-encoding-error-char)

(transcoder i/o-encoding-error-transcoder))

An exception with this type is raised when one of the oper-
ations for textual output to a port encounters a character
not supported by the codec of the specified transcoder.
The char field of the condition object contains the char-
acter that the operation was unable to encode, and the
transcoder field contains the transcoder specified with the
operation.

Exceptions of this type raised by the operations described
in this section are continuable. The handler, if it returns,
is expected to output to the port an appropriate encoding
for the character that caused the error. The operation that
raised the exception continues after that character.

(error-handling-mode name) syntax

If name is one of the 〈identifier〉s ignore, raise, or
replace, then the result is the corresponding symbol. If
name is not one of these identifiers, the result the expres-
sion is implementation-dependent.

Rationale: Implementations may support error-handling

modes other than those listed.

When part of a transcoder, an error-handling mode speci-
fies the behavior of a text I/O operation in the presence of
an encoding or decoding error:

If a codec for an input port encounters an invalid or in-
complete character encoding, it behaves according to the
specified error-handling mode. If it is ignore, the first byte
of the invalid encoding is ignored and decoding continues
with the next byte. If it is replace, the replacement char-
acter U+FFFD is injected into the data stream. Decoding
subsequently continues with the next byte. If it is raise, a
continuable exception with condition type &i/o-decoding
is raised. See the description of &i/o-decoding for details
on how to handle such an exception.

If a codec for an output port encounters a character it
cannot encode, it behaves according to the specified error-
handling mode. If it is ignore, the character is ignored and
encoding continues after the encoding. If it is replace,
an encoding-specific replacement character is emitted by
the transcoder, and decoding continues after the encoding.
This replacement character is U+FFFD for the Unicode
encodings capable of representing it, and the ? character
for the Latin-1 encoding. If the mode is raise, an excep-
tion with condition type &i/o-encoding is raised. See the
description of &i/o-decoding for details on how to handle
such an exception.

(make-transcoder codec eol-style handling-mode)
procedure

(make-transcoder codec eol-style) procedure
(make-transcoder codec) procedure

Codec must be a codec, eol-style, if present, an eol-style
symbol, and handling-mode, if present, an error-handling-
mode symbol. eol-style may be omitted, in which case it
defaults to the native end-of-line style of the underlying
platform. handling-mode may be omitted, in which case
it defaults to raise. The result is a transcoder with the
behavior specified by its arguments.

A transcoder returned by make-transcoder is equal in
the sense of eqv? to any other transcoder returned by
make-transcoder, if and only if the code, eol-style, and
handling-mode arguments are equal in the sense of eqv?.

(transcoder-codec transcoder) procedure
(transcoder-eol-style transcoder) procedure
(transcoder-error-handling-mode transcoder)

procedure

These are accessors for transcoder objects; when applied
to a transcoder returned by make-transcoder, they return
the codec, eol-style, handling-mode arguments.

15.3.4. Input and output ports

The operations described in this section are common to
input and output ports. A port may have an associ-
ated position that specifies a particular place within its
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data sink or source as a byte count from the beginning
of the sink or source, and operations for inspecting and
setting it. (Ends of file do not count as bytes.) A
port may also have an associated transcoder that repre-
sents a default text encoding associated with the port.
Note that the transcoder associated with a port does
not have any direct effect on the behavior of procedures
that perform textual I/O except for get-output-string
and call-with-string-output-port. However, it can
be passed to those procedures to specify that the text
encoding or decoding should happen according to that
transcoder.

(port? obj) procedure

Returns #t if the argument is a port, and returns #f oth-
erwise.

(port-transcoder port) procedure

Returns the transcoder associated with port , if it has one,
or #f if no transcoder is associated with port .

(port-has-port-position? port) procedure
(port-position port) procedure

The port-has-port-position? procedure returns #t if
the port supports the port-position operation, and #f
otherwise.

The port-position procedure returns the exact non-
negative integer index of the position at which the next
byte would be read from or written to the port. This pro-
cedure raises an exception with condition type &contract
if the port does not support the operation.

(port-has-set-port-position!? port) procedure
(set-port-position! port pos) procedure

Pos must be a non-negative exact integer.

The port-has-set-port-position? procedure returns #t
if the port supports the set-port-position! operation,
and #f otherwise.

The set-port-position! procedure sets the current byte
position of the port to pos. If port is an output or
combined input and output port, this first flushes port .
(See flush-output-port, section 15.3.6.) This procedure
raises an exception with condition type &contract if the
port does not support the operation.

(close-port port) procedure

Closes the port, rendering the port incapable of delivering
or accepting data. If port is an output port, it is flushed
before being closed. This has no effect if the port has

already been closed. A closed port is still a port. The
unspecified value is returned.

(call-with-port port proc) procedure

Proc must be a procedure that accepts a single argument.
The call-with-port procedure calls proc with port as an
argument. If proc returns, then the port is closed automat-
ically and the values returned by proc are returned. If proc
does not return, then the port is not closed automatically,
unless it is possible to prove that the port will never again
be used for a lookahead, get, or put operation.

15.3.5. Input ports

An input port allows reading an infinite sequence of bytes
punctuated by end of file objects. An input port connected
to a finite data source ends in an infinite sequence of end
of file objects. All of the procedures that perform textual
input accept a transcoder as an optional argument. If no
transcoder is supplied or the transcoder argument is #f,
the input bytes are interpreted as UTF-8 with a platform-
specific end-of-line convention.

It is unspecified whether a character encoding consisting of
several bytes may have an end of file between the bytes. If,
for example, get-char raises an &i/o-decoding exception
because the character encoding at the port’s position is
incomplete up to the next end of file, a subsequent call
to get-char may successfully decode a character if bytes
completing the encoding are available after the end of file.

(input-port? obj) procedure

Returns #t if the argument is an input port (or combined
input and output port), and returns #f otherwise.

(port-eof? input-port) procedure

Returns #t if the lookahead-u8 procedure would return
the end-of-file object, and returns #f otherwise.

(open-file-input-port filename) procedure
(open-file-input-port filename file-options)

procedure
(open-file-input-port filename file-options transcoder)

procedure

Returns an input port for the named file. The file-
options object, which may determine various aspects
of the returned port (see section 15.2.2), defaults to
(file-options).

The returned input port supports the port-position and
set-port-position! operations.

If transcoder is specified, it becomes the transcoder asso-
ciated with the returned port.
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(open-bytes-input-port bytes) procedure
(open-bytes-input-port bytes transcoder) procedure

Returns an input port whose bytes are drawn from the
bytes object bytes. If transcoder is specified, it becomes
the transcoder associated with the returned port.

If bytes is modified after open-bytes-input-port has
been called, the effect on the returned port is unspecified.

(open-string-input-port string) procedure
(open-string-input-port string transcoder) procedure

Returns an input port whose bytes are drawn from an en-
coding of string . If transcoder is not specified, that en-
coding is UTF-8. If transcoder is specified, the encoding
is according to transcoder . Also, transcoder becomes the
transcoder associated with the returned port. The effect
of modifying string , after open-string-input-port has
been called, on the returned port is unspecified.

(standard-input-port) procedure

Returns an input port connected to standard input, possi-
bly a fresh one on each call. If the returned port supports
textual input, it has an associated transcoder with some
encoding, some end-of-line style, and error-handling mode
raise.

Note: Implementations are encouraged to provide a transcoder

appopriate for reading text from the port.

(get-u8 input-port) procedure

Reads from input-port , blocking as necessary, until data is
available from input-port or until an end of file is reached.
If a byte becomes available, get-u8 returns the byte as
an octet, and it updates input-port to point just past that
byte. If no input byte is seen before an end of file is reached,
then the end-of-file object is returned.

(lookahead-u8 input-port) procedure

The lookahead-u8 procedure is like get-u8, but it does
not update input-port to point past the byte.

(get-bytes-n input-port k) procedure

Reads from input-port , blocking as necessary, until k bytes
are available from input-port or until an end of file is
reached. If k or more bytes are available before an end of
file, get-bytes-n returns a bytes object of size k . If fewer
bytes are available before an end of file, get-bytes-n re-
turns a bytes object containing those bytes. In either case,
the input port is updated to point just past the bytes read.
If an end of file is reached before any bytes are available,
get-bytes-n returns the end-of-file object.

(get-bytes-n! input-port bytes start count) procedure
Count must be an exact, non-negative integer, specifying
the number of bytes to be read. bytes must be a bytes
object with at least start + count elements.
The get-bytes-n! procedure reads from input-port , block-
ing as necessary, until count bytes are available from
input-port or until an end of file is reached. If count or
more bytes are available before an end of file, they are
written into bytes starting at index start , and the the re-
sult is count . If fewer bytes are available before the next
end of file, the available bytes are written into bytes start-
ing at index start , and the result is the number of bytes
actually read. In either case, the input port is updated to
point just past the data read. If an end of file is reached
before any bytes are available, get-bytes-n! returns the
end-of-file object.

(get-bytes-some input-port) procedure
Reads from input-port , blocking as necessary, until data
is available from input-port or until an end of file is
reached. If data becomes available, get-bytes-some re-
turns a freshly allocated bytes object of non-zero size con-
taining the available data, and it updates input-port to
point just past that data. If no input bytes are seen be-
fore an end of file is reached, then the end-of-file object is
returned.

(get-bytes-all input-port) procedure
Attempts to read all data until the next end of file, blocking
as necessary. If one or more bytes are read, get-bytes-all
returns a bytes object containing all bytes up to the next
end of file. Otherwise, get-bytes-all returns the end-
of-file object. Note that get-bytes-all may block indefi-
nitely, waiting to see an end of file, even though some bytes
are available.

(get-char input-port) procedure
(get-char input-port transcoder)

Reads from input-port , blocking as necessary, until the
complete encoding for a character is available from input-
port, or until the bytes that are available cannot be the pre-
fix of any valid encoding, or until an end of file is reached.
If a complete character is available before the next end
of file, get-char returns that character, and it updates
the input port to point past the bytes that encoded that
character. If an end of file is reached before any bytes are
read, then get-char returns the end-of-file object.

(lookahead-char input-port) procedure
(lookahead-char input-port transcoder) procedure
The lookahead-char procedure is like get-char, but it
does not update input-port to point past the bytes that
encode the character.
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Note: With some of the standard transcoders described in

this document, up to eight bytes of lookahead are required.

Nonstandard transcoders may require even more lookahead.

(get-string-n input-port k) procedure
(get-string-n input-port k transcoder) procedure

Reads from input-port , blocking as necessary, until the en-
codings of k characters (including invalid encodings, if they
don’t raise an exception) are available, or until an end of
file is reached.

If k or more characters are read before end of file,
get-string-n returns a string consisting of those k char-
acters. If fewer characters are available before an end of
file, but one or more characters can be read, get-string-n
returns a string containing those characters. In either case,
the input port is updated to point just past the data read.
If no bytes can be read before an end of file, then the end-
of-file object is returned.

(get-string-n! input-port string start count)
procedure

(get-string-n! input-port string start count transcoder)
procedure

Start and count must be an exact, non-negative integer,
specifying the number of characters to be read. string must
be a string with at least start + count characters.

Reads from input-port in the same manner as
get-string-n. If count or more characters are available
before an end of file, they are written into string starting
at index start , and count is returned. If fewer characters
are available before an end of file, but one or more can be
read, then those characters are written into string starting
at index start , and the number of characters actually read
is returned. If no characters can be read before an end of
file, then the end-of-file object is returned.

(get-string-all input-port) procedure
(get-string-all input-port transcoder) procedure

Reads from input-port until an end of file, decoding
characters in the same manner as get-string-n and
get-string-n!.

If data are available before the end of file, a string con-
taining all the text decoded from that data is returned. If
no data precede the end of file, the end-of-file object file
object is returned.

(get-line input-port) procedure
(get-line input-port transcoder) procedure

Reads from input-port up to and including the next end-
of-line encoding or line separator character (U+2028) or

end of file, decoding characters in the same manner as
get-string-n and get-string-n!.

If an end-of-line encoding or line separator is read, then
a string containing all of the text up to (but not includ-
ing) the end-of-line encoding is returned, and the port is
updated to point just past the end-of-line encoding or line
separator. If an end of file is encountered before any end-
of-line encoding is read, but some bytes have been read and
decoded as characters, then a string containing those char-
acters is returned. If an end of file is encountered before
any bytes are read, then the end-of-file object is returned.

(get-datum input-port) procedure
(get-datum input-port transcoder) procedure

Reads an external representation from input-port and re-
turns the datum it represents. The get-datum procedure
returns the next datum parsable from the given input-port ,
updating input-port to point exactly past the end of the ex-
ternal representation of the object.

Any 〈intertoken space〉 (see section 3.2) in the input
is first skipped. If an end of file occurs after the
〈intertoken space〉, the end of file object (see section 9.9)
is returned.

If a character inconsistent with an external representation
is encountered in the input, an exception with condition
types &lexical and &i/o-read is raised. Also, if the end
of file is encountered after the beginning of an external rep-
resentation, but the external representation is incomplete
and therefore not parsable, an exception with condition
types &lexical and &i/o-read is raised.

15.3.6. Output ports

An output port is a sink to which bytes are written. These
bytes may control external devices, or may produce files
and other objects that may subsequently be opened for
input. The procedures in this section that perform textual
output accept a transcoder as an optional argument. If no
transcoder is supplied, the character(s) output is translated
to UTF-8 with a platform-specific end-of-line convention.

(output-port? obj) procedure

Returns #t if the argument is an output port (or a com-
bined input and output port), and returns #f otherwise.

(flush-output-port output-port) procedure

Flushes any output from the buffer of output-port to the
underlying file, device, or object. The unspecified value is
returned.
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(output-port-buffer-mode output-port) procedure

Returns the symbol that represents the buffer-mode of
output-port .

(open-file-output-port filename) procedure
(open-file-output-port filename file-options)

procedure
(open-file-output-port filename file-options transcoder)

procedure

Returns an output port for the named file and the spec-
ified options (which default to (file-options)). The
buffer-mode argument is optional; it defaults to block. If
transcoder is specified, it becomes the transcoder associ-
ated with the returned port.

(open-bytes-output-port proc) procedure
(open-bytes-output-port proc transcoder) procedure
(open-string-output-port proc) procedure
(open-string-output-port proc transcoder) procedure

Creates an output port that accumulates a bytes object
from the output written to it. If transcoder is specified, it
becomes the transcoder associated with the returned port.

The open-string-output-port procedure is the same as
open-bytes-output-port.

(get-output-bytes output-port) procedure

Output-port must be a port that accumulates a
bytes object from the output written to it, such
as the ports created by open-bytes-output-port and
call-with-bytes-output-port. Returns a bytes object
containing the output that has been accumulated with
output-port so far. If the returned bytes object is modi-
fied, the the effect on output-port is unspecified.

(call-with-bytes-output-port proc) procedure
(call-with-bytes-output-port proc transcoder)

procedure

Proc must be a procedure accepting one argument. Creates
an output port that accumulates a bytes object from the
output written to it, and calls proc with that output port
as an argument. When proc returns for the first time,
the port is closed and the bytes object associated with the
port is returned. If transcoder is specified, it becomes the
transcoder associated with the port.

(get-output-string output-port) procedure
(get-output-string output-port transcoder) procedure

Output-port must be a port that accumulates a
bytes object from the output written to it, such
as the ports created by open-bytes-output-port and

call-with-bytes-output-port. The decoding of the
bytes object associated with output-port is returned as a
string. That decoding is according to transcoder if it is
specified. If it is not specified, the decoding is according to
the transcoder associated with the port. If no transcoder
is associated with the port, the decoding is according to
UTF-8. In either case, decoding errors are always handled
analogously to the replace error-handling mode: the first
byte of each invalid encoding is skipped and decoded as the
U+FFFD replacement character.

If the returned string is modified, the effect on output-port
is unspecified.

(call-with-string-output-port proc) procedure
(call-with-string-output-port proc transcoder)

procedure

Proc must be a procedure accepting one argument. Cre-
ates an output port that accumulates a bytes object from
the output written to it, and calls proc with that port as an
argument. When proc returns for the first time, the port
is closed and the decoding of the bytes object associated
with the port is returned as a string. That decoding is
according to transcoder if it is specified. If it is not speci-
fied, the decoding is according to the transcoder associated
with the port. If no transcoder is associated with the port,
the decoding is according to UTF-8. In either case, decod-
ing errors are always handled analogously to the replace
error-handling mode. If transcoder is specified, it also be-
comes the transcoder associated with the port.

(clear-bytes-output-port! output-port) procedure
(clear-string-output-port! output-port) procedure

Output-port must be a port that accumulates a
bytes object from the output written to it, such as
the ports created by the open-bytes-output-port
and call-with-bytes-output-port proce-
dures. The clear-bytes-output-port! and
clear-string-output-port! procedures clear the
bytes object associated with output-port , associating it
with an empty bytes object.

(standard-output-port) procedure
(standard-error-port) procedure

Returns a port connected to the standard output or stan-
dard error, respectively. If the returned port supports tex-
tual input, it has an associated transcoder with some en-
coding, some end-of-line style, and error-handling mode
raise.

Note: Implementations are encouraged to provide transcoders

appopriate for writing text to these ports.
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(put-u8 output-port octet) procedure

Writes octet to the output port and returns the unspecified
value.

(put-bytes output-port bytes) procedure
(put-bytes output-port bytes start) procedure
(put-bytes output-port bytes start count) procedure

Start and count must be non-negative exact integers that
default to 0 and (bytes-length bytes) − start , respec-
tively. bytes must have a size of at least start +count . The
put-bytes procedure writes count bytes of the bytes ob-
ject bytes, starting at index start , to the output port. The
unspecified value is returned.

(put-char output-port char) procedure
(put-char output-port char transcoder)

Writes an encoding of char to the port. The unspecified
value is returned.

(put-string output-port string) procedure
(put-string output-port string transcoder) procedure

Writes an encoding of string to the port. The unspecified
value is returned.

(put-string-n output-port string) procedure
(put-string-n output-port string start) procedure
(put-string-n output-port string start count)

procedure
(put-string-n output-port string start count transcoder)

procedure

Start and count must be non-negative exact integers.
string must have a length of at least start + count . start
defaults to 0. count defaults to (string-length bytes)−
start . Writes the encoding of the count characters of string ,
starting at index start , to the port. The unspecified value
is returned.

(put-datum output-port datum) procedure
(put-datum output-port datum transcoder) procedure

Datum should be a datum value. The put-datum
procedure writes an external representation of datum
to output-port . The specific external representation is
implementation-dependent.

Note: The put-datum procedure merely writes the external

reprentation. If put-datum is used to write several subsequent

external representations to an output port, care must be taken

to delimit them properly so they can be read back in by subse-

quent calls to get-datum.

15.3.7. Opening files for reading and writing

(open-file-input/output-port filename) procedure
(open-file-input/output-port filename file-options)

procedure
(open-file-input/output-port filename procedure

file-options buffer-mode)
(open-file-input/output-port filename procedure

file-options buffer-mode transcoder)

Returns a single port that is both an input port and an
output port for the named file and options (which default
to (file-options)). buffer-mode optionally specifies the
buffer mode of the port; it defaults to block.

The returned port supports the port-position and
set-port-position! operations. The same port position
is used for both input and output.

If transcoder is specified, it becomes the transcoder asso-
ciated with the returned port.

15.3.8. Ports from readers and writers

(open-reader-input-port reader) procedure
(open-reader-input-port reader transcoder)

procedure

Returns an input port connected to the reader reader . If
transcoder is specified, it becomes the transcoder associ-
ated with the returned port.

The returned port supports the port-position operation
if and only if reader supports the reader-get-position
operation. It supports the set-port-position! operation
if and only if reader supports the reader-set-position!
operation.

(open-writer-output-port writer) procedure
(open-writer-output-port writer buffer-mode)

procedure
(open-writer-output-port writer procedure

buffer-mode transcoder)

Returns an output port connected to the writer writer .
buffer-mode optionally specifies the buffer mode of the
port; it defaults to block. If transcoder is specified, it
becomes the transcoder associated with the returned port.

The returned port supports the port-position operation
if and only if writer supports the writer-get-position
operation. It supports the set-port-position! operation
if and only if writer supports the writer-set-position!
operation.
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(open-reader/writer-input/output-port procedure
reader writer buffer-mode transcoder)

Returns a combined input/output port connected to reader
for reading operations and to writer for writing operations.
Buffer-mode optionally specifies the buffer mode of the
port; it defaults to block. If transcoder is specified, it
becomes the transcoder associated with the returned port.

The returned port supports the port-position operation
if and only if reader supports the reader-get-position
operation and writer supports the writer-get-position
operation. It supports the set-port-position! operation
if and only if reader supports the reader-set-position!
operation and writer supports the writer-set-position!
operation. In that case, each call to set-port-position!
will set the position of both reader and writer .

Note: It is expected that reader and writer access the same

underlying data, as is the case with the reader and writer and

writer returned by open-file-reader+writer.

15.4. Simple I/O

This section describes the (r6rs i/o simple) library,
which provides a somewhat more convenient interface for
performing textual I/O on ports. This library implements
most of the I/O procedures of the previous version of this
report [28].

(call-with-input-file filename proc) procedure
(call-with-output-file filename proc) procedure

Proc must be a procedure accepting a single argument.
These procedures open the file named by filename for in-
put or for output, with no specified file options, and call
proc with the obtained port as an argument. If proc re-
turns, then the port is closed automatically and the values
returned by proc are returned. If proc does not return,
then the port is not closed automatically, unless it is pos-
sible to prove that the port will never again be used for an
I/O operation.

(input-port? obj) procedure
(output-port? obj) procedure

These are the same as the input-port? and output-port?
procedures in the (r6rs i/o ports) library.

(current-input-port) procedure
(current-output-port) procedure

These return default ports for a input and output. Nor-
mally, these default ports are associated with standard in-
put and standard output, respectively, but can be dynam-
ically re-assigned using the with-input-from-file and
with-output-to-file procedures described below.

(with-input-from-file filename thunk) procedure
(with-output-to-file filename thunk) procedure

Thunk must be a procedure that takes no arguments. The
file is opened for input or output using empty file op-
tions, and thunk is called with no arguments. During
the dynamic extent of the call to thunk , the obtained
port is made the value returned by current-input-port
or current-output-port procedures; the previous default
values are reinstated when the dynamic extent is exited.
When thunk returns, the port is closed automatically, and
the previous values for current-input-port. The values
returned by thunk are returned. If an escape procedure is
used to escape back into the call to thunk after thunk is
returned, the behavior is unspecified.

(open-input-file filename) procedure

This opens filename for input, with empty file options, and
returns the obtained port.

(open-output-file filename) procedure

This opens filename for output, with empty file options,
and returns the obtained port.

(close-input-port input-port) procedure
(close-output-port output-port) procedure

This closes input-port or output-port , respectively.

(read-char) procedure
(read-char input-port) procedure

This reads from input-port using the transcoder assocated
with it, blocking as necessary, until the complete encoding
for a character is available from input-port, or the bytes
that are available cannot be the prefix of any valid encod-
ing, or an end of file is reached.

If a complete character is available before the next end of
file, read-char returns that character, and updates the
input port to point past the bytes that encoded that char-
acter. If an end of file is reached before any bytes are read,
then read-char returns the end-of-file object.

If input-port is omitted, it defaults to the value returned
by current-input-port.

(peek-char) procedure
(peek-char input-port) procedure

This is the same as read-char, but does not consume any
data from the port.



94 Revised5.91 Scheme

(read) procedure
(read input-port) procedure

Reads an external representation from input-port using the
transcoder associated with input-port and returns the da-
tum it represents. The read procedure operates in the
same way as get-datum, see section 15.3.5.

If input-port is omitted, it defaults to the value returned
by current-input-port.

(write-char char) procedure
(write-char char output-port) procedure

Writes an encoding of the character char to the port using
the transcoder associated with output-port . The unspeci-
fied value is returned.

If output-port is omitted, it defaults to the value returned
by current-output-port.

(newline) procedure
(newline output-port) procedure

This is equivalent to using write-char to write #
linefeed to output-port using the transcoder associated
with output-port .

If output-port is omitted, it defaults to the value returned
by current-output-port.

(display obj) procedure
(display obj output-port) procedure

Writes a representation of obj to the given port using
the transcoder associated with output-port . Strings that
appear in the written representation are not enclosed in
doublequotes, and no characters are escaped within those
strings. Character objects appear in the representation as
if written by write-char instead of by write. display
returns the unspecified value. The output-port argument
may be omitted, in which case it defaults to the value re-
turned by current-output-port.

(write obj) procedure
(write obj output-port) procedure

Writes the external representation of obj to output-port us-
ing the transcoder associated with output-port . The write
procedure operates in the same way as put-datum, see sec-
tion 15.3.6.

If output-port is omitted, it defaults to the value returned
by current-output-port.

16. Arithmetic

This chapter describes Scheme’s libraries for more special-
ized numerical operations: fixnum and flonum arithmetic,

as well as generic exact and generic inexact arithmetic. It
also gives more precise descriptions of the semantics of in-
finities and NaNs, and some of the underlying mathemat-
ical operations for integer division and the transcendental
functions.

16.1. Representability of infinities and
NaNs

The specification of the numerical operations is written as
though infinities and NaNs are representable, and specifies
many operations with respect to these numbers in ways
that are consistent with the IEEE 754 standard for binary
floating point arithmetic. An implementation of Scheme
is not required to represent infinities and NaNs, however;
an implementation must raise a continuable exception with
condition type &no-infinities or &no-nans (respectively;
see section 16.4) whenever it is unable to represent an in-
finity or NaN as required by the specification. In this case,
the continuation of the exception handler is the continu-
ation that otherwise would have received the infinity or
NaN value. This requirement also applies to conversions
between numbers and external representations, including
the reading of program source code.

16.2. Semantics of common operations

Some operations are the semantic basis for several arith-
metic procedures. The behavior of these operations is de-
scribed in this section for later reference.

16.2.1. Integer division

For various kinds of arithmetic (fixnum, flonum, exact, in-
exact, and generic), Scheme provides operations for per-
forming integer division. They rely on mathematical op-
erations div, mod, div0, and mod0, that are defined as
follows:

div, mod, div0, and mod0 each accept two real numbers x1

and x2 as operands, where x2 must be nonzero.

div returns an integer, and mod returns a real. Their re-
sults are specified by

x1 div x2 = nd

x1 mod x2 = xm

where
x1 = nd ∗ x2 + xm

0 ≤ xm < |x2|

Examples:

5 div 3 = 1
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5 div − 3 = −1
5 mod 3 = 2

5 mod − 3 = 2

div0 and mod0 are like div and mod, except the result of
mod0 lies within a half-open interval centered on zero. The
results are specified by

x1 div0 x2 = nd

x1 mod0 x2 = xm

where:
x1 = nd ∗ x2 + xm

−|x2
2 | ≤ xm < |x2

2 |
Examples:

5 div0 3 = 2
5 div0 − 3 = −2

5 mod0 3 = −1
5 mod0 − 3 = −1

Rationale: The half-open symmetry about zero is convenient

for some purposes.

16.2.2. Transcendental functions

In general, the transcendental functions log, sin−1 (arc-
sine), cos−1 (arccosine), and tan−1 are multiply defined.
The value of log z is defined to be the one whose imagi-
nary part lies in the range from −π (inclusive if −0.0 is
distinguished, exclusive otherwise) to π (inclusive). log 0
is undefined.

The value of log z for non-real z is defined in terms of log
on real numbers as

log z = log |z|+ angle z

where angle z is the angle of z = a · eib specified as:

angle z = b + 2πn

with −π ≤ angle z ≤ π and angle z = b + 2πn for some
integer n.

With the one-argument version of log defined this way, the
values of the two-argument-version of log, sin−1 z, cos−1 z,
tan−1 z, and the two-argument version of tan−1 are accord-
ing to the following formulæ:

log z b =
log z

log b

sin−1 z = −i log(iz +
√

1− z2)
cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)
tan−1 x y = angle(x + yi)

The range of tan−1 x y is as in the following table. The
asterisk (*) indicates that the entry applies to implemen-
tations that distinguish minus zero.

y condition x condition range of result r
y = 0.0 x > 0.0 0.0

∗ y = +0.0 x > 0.0 +0.0
∗ y = −0.0 x > 0.0 −0.0

y > 0.0 x > 0.0 0.0 < r < π
2

y > 0.0 x = 0.0 π
2

y > 0.0 x < 0.0 π
2 < r < π

y = 0.0 x < 0 π
∗ y = +0.0 x < 0.0 π
∗ y = −0.0 x < 0.0 −π

y < 0.0 x < 0.0 −π < r < −π
2

y < 0.0 x = 0.0 −π
2

y < 0.0 x > 0.0 −π
2 < r < 0.0

y = 0.0 x = 0.0 undefined
∗ y = +0.0 x = +0.0 +0.0
∗ y = −0.0 x = +0.0 −0.0
∗ y = +0.0 x = −0.0 π
∗ y = −0.0 x = −0.0 −π
∗ y = +0.0 x = 0 π

2
∗ y = −0.0 x = 0 −π

2

The above specification follows Steele [46], which in turn
cites Penfield [38]; refer to these sources for more detailed
discussion of branch cuts, boundary conditions, and imple-
mentation of these functions.

16.3. Fixnums

Every implementation must define its fixnum range as a
closed interval

[−2w−1, 2w−1 − 1]

such that w is a a (mathematical) integer w ≥ 24. Every
mathematical integer within an implementation’s fixnum
range must correspond to an exact integer that is repre-
sentable within the implementation. A fixnum is an exact
integer whose value lies within this fixnum range.

This section specifies two kinds of operations on fixnums.
Operations whose names begin with fixnum perform
arithmetic modulo 2w. Operations whose names be-
gin with fx perform integer arithmetic on their fixnum
arguments, but raise an exception with condition type
&implementation-restriction if the result is not a
fixnum.

Rationale: The operations whose names begin with fixnum im-

plement arithmetic on a quotient ring of the integers, but their

results are not the same in every implementation because the

particular ring is parameterized by w. The operations whose

names begin with fx do not have as nice a closure property,

and the arguments that cause them to raise an exception are

not the same in every implementation, but any results they
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return without raising an exception are the same in all imple-

mentations.

Some operations (e.g. fixnum< and fx<) behave the same
in both sets.

Rationale: Duplication of names reduces bias toward either

set, and saves programmers from having to remember which

names are supplied.

This section uses fx , fx1 and fx2 as parameter names for
arguments that must be fixnums.

16.3.1. Quotient-ring fixnum operations

This section describes the (r6rs arithmetic fixnum) li-
brary.

(fixnum? obj) procedure

Returns #t if obj is an exact integer within the fixnum
range, and otherwise returns #f.

(fixnum-width) procedure
(least-fixnum) procedure
(greatest-fixnum) procedure

These procedures return w, −2w−1 and 2w−1 − 1: the
width, minimum and the maximum value of the fixnum
range, respectively.

(fixnum=? fx1 fx2 fx3 . . . ) procedure
(fixnum>? fx1 fx2 fx3 . . . ) procedure
(fixnum<? fx1 fx2 fx3 . . . ) procedure
(fixnum>=? fx1 fx2 fx3 . . . ) procedure
(fixnum<=? fx1 fx2 fx3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, #f otherwise.

(fixnum-zero? fx) procedure
(fixnum-positive? fx) procedure
(fixnum-negative? fx) procedure
(fixnum-odd? fx) procedure
(fixnum-even? fx) procedure

These numerical predicates test a fixnum for a particular
property, returning #t or #f. The five properties tested by
these procedures are: whether the number is zero, greater
than zero, less than zero, odd, or even.

(fixnum-max fx1 fx2 . . . ) procedure
(fixnum-min fx1 fx2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(fixnum+ fx1 . . . ) procedure
(fixnum* fx1 . . . ) procedure

These procedures return the unique fixnum that is con-
gruent mod 2w to the sum or product of their arguments.

(fixnum- fx1 fx2 . . . ) procedure
(fixnum- fx) procedure

With two or more arguments, this procedure returns the
unique fixnum that is congruent mod 2w to the difference of
its arguments, associating to the left. With one argument,
however, it returns the the unique fixnum that is congruent
mod 2w to the additive inverse of its argument.

(fixnum-div+mod fx1 fx2) procedure
(fixnum-div fx1 fx2) procedure
(fixnum-mod fx1 fx2) procedure
(fixnum-div0+mod0 fx1 fx2) procedure
(fixnum-div0 fx1 fx2) procedure
(fixnum-mod0 fx1 fx2) procedure

fx2 must be nonzero. These procedures implement number-
theoretic integer division modulo 2w. Each procedure re-
turns the unique fixnum(s) congruent modulo 2w to the
result(s) specified in section 16.2.1.

(fixnum-div ex1 ex2) =⇒ ex1 div ex2

(fixnum-mod ex1 ex2) =⇒ ex1 mod ex2

(fixnum-div+mod ex1 ex2)

=⇒ ex1 div ex2, ex1 mod ex2

; two return values

(fixnum-div0 ex1 ex2) =⇒ ex1 div0 ex2

(fixnum-mod0 ex1 ex2) =⇒ ex1 mod0 ex2

(fixnum-div0+mod0 ex1 ex2)

=⇒ ex1 ex1 div0 ex2, ex1 mod0 ex2

; two return values

(fixnum+/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ fx1 fx2 fx3))

(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

Note: The results returned by the fixnum+/carry,

fixnum-/carry, and fixnum*/carry procedures depend upon

the precision w, so there are no fx equivalents to these proce-

dures.

(fixnum-/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:
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(let* ((d (- fx1 fx2 fx3))

(d0 (mod0 d (expt 2 (fixnum-width))))

(d1 (div0 d (expt 2 (fixnum-width)))))

(values d0 d1))

(fixnum*/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ (* fx1 fx2) fx3))

(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fixnum-not fx) procedure

Returns the unique fixnum that is congruent mod 2w to
the one’s-complement of fx .

(fixnum-and fx1 . . . ) procedure
(fixnum-ior fx1 . . . ) procedure
(fixnum-xor fx1 . . . ) procedure

These procedures return the fixnum that is the bit-wise
“and,” “inclusive or,” or “exclusive or” of the two’s com-
plement representations of their arguments. If they are
passed only one argument, they return that argument. If
they are passed no arguments, they return the fixnum (ei-
ther −1 or 0) that acts as identity for the operation.

(fixnum-if fx1 fx2 fx3) procedure

Returns the fixnum result of the following computa-
tion:

(fixnum-ior (fixnum-and fx1 fx2)

(fixnum-and (fixnum-not fx1) fx3))

(fixnum-bit-count fx) procedure

If fx is non-negative, this procedure returns the number of
1 bits in the two’s complement representation of fx . Other-
wise it returns the number of 0 bits in the two’s complement
representation of fx .

(fixnum-length fx) procedure

Returns the fixnum result of the following computa-
tion:

(do ((result 0 (+ result 1))

(bits (if (fixnum-negative? fx)
(fixnum-not fx)
fx)

(fixnum-logical-shift-right bits 1)))

((fixnum-zero? bits)

result))

(fixnum-first-bit-set fx) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of fx . If fx is 0, then −1 is
returned.

(fixnum-first-bit-set 0) =⇒ -1

(fixnum-first-bit-set 1) =⇒ 0

(fixnum-first-bit-set -4) =⇒ 2

(fixnum-bit-set? fx1 fx2) procedure

Fx2 must be non-negative. The fixnum-bit-set? proce-
dure returns the fixnum result of the following computa-
tion:

(not

(fixnum-zero?

(fixnum-and fx1

(fixnum-logical-shift-left 1 fx2))))

(fixnum-copy-bit fx1 fx2 fx3) procedure

Fx2 must be non-negative. The fixnum-copy-bit proce-
dure returns the fixnum result of the following computa-
tion:

(let* ((mask (fixnum-logical-shift-left 1 fx2)))

(fixnum-if mask

(fixnum-logical-shift-left fx3 fx2)

fx1))

(fixnum-bit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative. The fixnum-bit-field
procedure returns the fixnum result of the following com-
putation:

(let* ((mask (fixnum-not

(fixnum-logical-shift-left -1 fx3))))

(fixnum-logical-shift-right (fixnum-and fx1 mask)

fx2))

(fixnum-copy-bit-field fx1 fx2 fx3 fx4) procedure

Fx2 and fx3 must be non-negative. The
fixnum-copy-bit-field procedure returns the fixnum
result of the following computation:

(let* ((to fx1)

(start fx2)

(end fx3)

(from fx4)

(mask1 (fixnum-logical-shift-left -1 start))

(mask2 (fixnum-not

(fixnum-logical-shift-left -1 end)))

(mask (fixnum-and mask1 mask2)))

(fixnum-if mask

(fixnum-logical-shift-left from start)

to))
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(fixnum-arithmetic-shift fx1 fx2) procedure

Returns the unique fixnum that is congruent mod 2w to
the result of the following computation:

(exact-floor (* fx1 (expt 2 fx2)))

(fixnum-arithmetic-shift-left fx1 fx2) procedure
(fixnum-arithmetic-shift-right fx1 fx2) procedure

Fx2 must be non-negative.
fixnum-arithmetic-shift-left returns the
same result as fixnum-arithmetic-shift, and
(fixnum-arithmetic-shift-right fx1 fx2) returns
the same result as (fixnum-arithmetic-shift fx1

(fixnum- fx2)).

(fixnum-logical-shift-left fx1 fx2) procedure

Behaves the same as fixnum-arithmetic-shift-left.

(fixnum-logical-shift-right fx1 fx2) procedure

Fx2 must be non-negative. The
fixnum-logical-shift-right procedure returns the
result of the following computation:

(let* ((n fx1)

(shift fx2)

(shifted

(fixnum-arithmetic-shift-right n shift)))

(let* ((mask-width

(fixnum-

(fixnum-width)

(fixnum-mod shift (fixnum-width))))

(mask (fixnum-not

(fixnum-logical-shift-left

-1 mask-width))))

(fixnum-and shifted mask)))

Note: The results of fixnum-logical-shift-left and

fixnum-logical-shift-left can depend upon the precision w,

so they have no fx equivalents.

(fixnum-rotate-bit-field fx1 fx2 fx3 fx4) procedure

Fx2, fx3, and fx4 must be non-negative. The
fixnum-rotate-bit-field procedure returns the result of
the following computation:

(let* ((n fx1)

(start fx2)

(end fx3)

(count fx4)

(width (fixnum- end start)))

(if (fixnum-positive? width)

(let* ((count (fixnum-mod count width))

(field0

(fixnum-bit-field n start end))

(field1

(fixnum-logical-shift-left

field0 count))

(field2

(fixnum-logical-shift-right

field0 (fixnum- width count)))

(field (fixnum-ior field1 field2)))

(fixnum-copy-bit-field n start end field))

n))

(fixnum-reverse-bit-field fx1 fx2 fx3) procedure

Returns the fixnum obtained from fx1 by reversing the bit
field specified by fx2 and fx3.

(fixnum-reverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

(fixnum-reverse-bit-field #b1010010 91 -4)

=⇒ 82 ; #b1010010

16.3.2. Signalling fixnum operations

This section describes the (r6rs arithmetic fx) library.

(fixnum? obj) procedure

This is the same as fixnum? in the (r6rs arithmetic
fixnum) library.

(fixnum-width) procedure
(least-fixnum) procedure
(greatest-fixnum) procedure

These are the same as fixnum-width, least-fixnum, and
greatest-fixnum in the (r6rs arithmetic fixnum) li-
brary, respectively.

(fx=? fx1 fx2 fx3 . . . ) procedure
(fx>? fx1 fx2 fx3 . . . ) procedure
(fx<? fx1 fx2 fx3 . . . ) procedure
(fx>=? fx1 fx2 fx3 . . . ) procedure
(fx<=? fx1 fx2 fx3 . . . ) procedure

These procedures perform the same operations as
fixnum=?, fixnum>?, fixnum<?, fixnum>=?, and
fixnum<=?, respectively.

(fxzero? fx) procedure
(fxpositive? fx) procedure
(fxnegative? fx) procedure
(fxodd? fx) procedure
(fxeven? fx) procedure

These procedures perform the same operations as
fixnum-zero?, fixnum-positive?, fixnum-negative?,
fixnum-odd?, and fixnum-even?, respectively.
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(fxmax fx1 fx2 . . . ) procedure
(fxmin fx1 fx2 . . . ) procedure

These procedures perform the same operations as
fixnum-max, and fixnum-min, respectively.

(fx+ fx1 fx2) procedure
(fx* fx1 fx2) procedure

These procedures return the sum or product of
their arguments, provided that sum or product
is a fixnum. An exception with condition type
&implementation-restriction is raised if that sum
or product is not a fixnum.

Rationale: These procedures are restricted to two arguments

because their generalizations to three or more arguments would

require precision proportional to the number of arguments.

(fx- fx1 fx2) procedure
(fx- fx) procedure

With two arguments, this procedure returns the difference
of its arguments, provided that difference is a fixnum.

With one argument, this procedure returns the additive
inverse of its argument, provided that integer is a fixnum.

An exception with condition type &contract is raised if
the mathematically correct result of this procedure is not
a fixnum.

(fx- (least-fixnum))

=⇒ &contract exception

(fxdiv+mod fx1 fx2) procedure
(fxdiv fx1 fx2) procedure
(fxmod fx1 fx2) procedure
(fxdiv0+mod0 fx1 fx2) procedure
(fxdiv0 fx1 fx2) procedure
(fxmod0 fx1 fx2) procedure

Fx2 must be nonzero. These procedures implement
number-theoretic integer division and return the results
of the corresponding mathematical operations specified
in the section 16.2.1. An exception with condition type
&implementation-restriction is raised if a result speci-
fied by that section is not a fixnum.

(fxdiv ex1 ex2) =⇒ ex1 div ex2

(fxmod ex1 ex2) =⇒ ex1 mod ex2

(fxdiv+mod ex1 ex2)

=⇒ ex1 div ex2, ex1 mod ex2

; two return values

(fxdiv0 ex1 ex2) =⇒ ex1 div0 ex2

(fxmod0 ex1 ex2) =⇒ ex1 mod0 ex2

(fxdiv0+mod0 ex1 ex2)

=⇒ ex1 ex1 div0 ex2, ex1 mod0 ex2

; two return values

(fxnot fx) procedure

This performs the same operation as fixnum-not.

(fxand fx1 . . . ) procedure
(fxior fx1 . . . ) procedure
(fxxor fx1 . . . ) procedure

These procedures perform the same operations as
fixnum-and, fixnum-ior, and fixnum-xor, respectively.

(fxif fx1 fx2 fx3) procedure

This performs the same operation as fixnum-if.

(fxbit-count fx) procedure

This performs the same operation as fixnum-bit-count.

(fxlength fx) procedure

This performs the same operation as fixnum-length.

(fxfirst-bit-set fx) procedure

This performs the same operation as
fixnum-first-bit-set.

(fxbit-set? fx fx2) procedure

Fx2 must be non-negative and less than (fixnum-width).
The fxbit-set? procedure returns the same result as
fixnum-bit-set?.

(fxcopy-bit fx1 fx2 fx3) procedure

Fx2 must be non-negative and less than (fixnum-width).
Fx3 must be 0 or 1. The fxcopy-bit procedure returns
the same result as fixnum-copy-bit.

(fxbit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, fx2 must be less than or equal
to fx3. The fxbit-field procedure returns the same result
returned by fixnum-bit-field.

(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure

Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, or fx2 must be less than or
equal to fx3. The fxcopy-bit-field procedure returns
the same result returned by fixnum-copy-bit-field.

(fxarithmetic-shift fx1 fx2) procedure

The absolute value of the fx2 must be less than
(fixnum-width). If
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(exact-floor (* fx1 (expt 2 fx2)))

is a fixnum, then that fixnum is returned.
Otherwise an exception with condition type
&implementation-restriction is raised.

(fxarithmetic-shift-left fx1 fx2) procedure
(fxarithmetic-shift-right fx1 fx2) procedure

Fx2 must be non-negative. fxarithmetic-shift-left
behaves the same as fxarithmetic-shift, and
(fxarithmetic-shift-right fx1 fx2) behaves the
same as (fxarithmetic-shift fx1 (fixnum- fx2)).

(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure

Fx2, fx3, and fx4 must be non-negative and less than
(fixnum-width). Fx4 must be less than the difference be-
tween fx3 and fx3. The fxrotate-bit-field procedure
returns the same result as the fixnum-rotate-bit-field
procedure.

(fxreverse-bit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, fx2 must be less than or equal
to fx3. The fxreverse-bit-field procedure returns the
same result as the fixnum-reverse-bit-field procedure.

16.4. Flonums

This section describes the (r6rs arithmetic flonum) li-
brary.

This section uses fl , fl1 and fl2 as parameter names for ar-
guments that must be flonums, and ifl , ifl1 and ifl2 as pa-
rameter names for arguments that must be integer-valued
flonums, i.e. flonums for which the integer-valued? pred-
icate returns true.

(flonum? obj) procedure

Returns #t if obj is a flonum, and otherwise returns #f.

(fl=? fl1 fl2 fl3 . . . ) procedure
(fl<? fl1 fl2 fl3 . . . ) procedure
(fl<=? fl1 fl2 fl3 . . . ) procedure
(fl>? fl1 fl2 fl3 . . . ) procedure
(fl>=? fl1 fl2 fl3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, #f otherwise. These predicates are required
to be transitive.

(fl= +inf.0 +inf.0) =⇒ #t

(fl= -inf.0 +inf.0) =⇒ #f

(fl= -inf.0 -inf.0) =⇒ #t

(fl= 0.0 -0.0) =⇒ #t

(fl< 0.0 -0.0) =⇒ #f

(fl= +nan.0 fl) =⇒ #f

(fl< +nan.0 fl) =⇒ #f

(flinteger? fl) procedure
(flzero? fl) procedure
(flpositive? fl) procedure
(flnegative? fl) procedure
(flodd? ifl) procedure
(fleven? ifl) procedure
(flfinite? fl) procedure
(flinfinite? fl) procedure
(flnan? fl) procedure

These numerical predicates test a flonum for a particular
property, returning #t or #f. The flinteger? procedure
tests it if the number is an integer, flzero? tests if it is
fl=? to zero, flpositive? tests if it is greater than zero,
flnegative? tests if it is less than zero, flodd? tests if it
is odd, fleven? tests if it is even, flfinite? tests if it is
not an infinity and not a NaN, flinfinite? tests if it is
an infinity, and flnan? tests if it is a NaN.

(flnegative? -0.0) =⇒ #f

(flfinite? +inf.0) =⇒ #f

(flfinite? 5.0) =⇒ #t

(flinfinite? 5.0) =⇒ #f

(flinfinite? +inf.0) =⇒ #t

Note: (flnegative? -0.0) must return #f, else it would lose

the correspondence with (fl< -0.0 0.0), which is #f according

to the IEEE standards.

(flmax fl1 fl2 . . . ) procedure
(flmin fl1 fl2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(fl+ fl1 . . . ) procedure
(fl* fl1 . . . ) procedure

These procedures return the flonum sum or product of
their flonum arguments. In general, they should return
the flonum that best approximates the mathematical sum
or product. (For implementations that represent flonums
as IEEE binary floating point numbers, the meaning of
“best” is reasonably well-defined by the IEEE standards.)

(fl+ +inf.0 -inf.0) =⇒ +nan.0

(fl+ +nan.0 fl) =⇒ +nan.0

(fl* +nan.0 fl) =⇒ +nan.0
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(fl- fl1 fl2 . . . ) procedure
(fl- fl) procedure
(fl/ fl1 fl2 . . . ) procedure
(fl/ fl) procedure

With two or more arguments, these procedures return the
flonum difference or quotient of their flonum arguments,
associating to the left. With one argument, however, they
return the additive or multiplicative flonum inverse of their
argument. In general, they should return the flonum that
best approximates the mathematical difference or quotient.
(For implementations that represent flonums as IEEE bi-
nary floating point numbers, the meaning of “best” is rea-
sonably well-defined by the IEEE standards.)

(fl- +inf.0 +inf.0) =⇒ +nan.0

For undefined quotients, fl/ behaves as specified by the
IEEE standards:

(fl/ 1.0 0.0) =⇒ +inf.0

(fl/ -1.0 0.0) =⇒ -inf.0

(fl/ 0.0 0.0) =⇒ +nan.0

(flabs fl) procedure

Returns the absolute value of fl .

(fldiv+mod fl1 fl2) procedure
(fldiv fl1 fl2) procedure
(flmod fl1 fl2) procedure
(fldiv0+mod0 fl1 fl2) procedure
(fldiv0 fl1 fl2) procedure
(flmod0 fl1 fl2) procedure

These procedures implement number-theoretic integer divi-
sion and return the results of the corresponding mathemat-
ical operations specified in section 16.2.1. For zero divisors,
these procedures may return a NaN or some meaningless
flonum.

(fldiv fl1 fl2) =⇒ fl1 div fl2

(flmod fl1 fl2) =⇒ fl1 mod fl2

(fldiv+mod fl1 fl2)

=⇒ fl1 div fl2, fl1 mod fl2

; two return values

(fldiv0 fl1 fl2) =⇒ fl1 div0 fl2

(flmod0 fl1 fl2) =⇒ fl1 mod0 fl2

(fldiv0+mod0 fl1 fl2)

=⇒ fl1 div0 fl2, fl1 mod0 fl2

; two return values

(flnumerator fl) procedure
(fldenominator fl) procedure

These procedures return the numerator or denominator of
fl as a flonum; the result is computed as if fl was repre-
sented as a fraction in lowest terms. The denominator is
always positive. The denominator of 0.0 is defined to be
1.0.

(flnumerator +inf.0) =⇒ +inf.0

(flnumerator -inf.0) =⇒ -inf.0

(fldenominator +inf.0) =⇒ 1.0

(fldenominator -inf.0) =⇒ 1.0

(flnumerator 0.75) =⇒ 3.0 ; example

(fldenominator 0.75) =⇒ 4.0 ; example

The following behavior is strongly recommended but not
required:

(flnumerator -0.0) =⇒ -0.0

(flfloor fl) procedure
(flceiling fl) procedure
(fltruncate fl) procedure
(flround fl) procedure

These procedures return integral flonums for flonum argu-
ments that are not infinities or NaNs. For such arguments,
flfloor returns the largest integral flonum not larger than
fl . The flceiling procedure returns the smallest integral
flonum not smaller than fl . The fltruncate procedure re-
turns the integral flonum closest to fl whose absolute value
is not larger than the absolute value of fl . The flround
procedure returns the closest integral flonum to fl , round-
ing to even when fl is halfway between two integers.

Rationale: The flround procedure rounds to even for consis-

tency with the default rounding mode specified by the IEEE

floating point standard.

Although infinities and NaNs are not integers, these pro-
cedures return an infinity when given an infinity as an ar-
gument, and a NaN when given a NaN:

(flfloor +inf.0) =⇒ +inf.0

(flceiling -inf.0) =⇒ -inf.0

(fltruncate +nan.0) =⇒ +nan.0

(flexp fl) procedure
(fllog fl) procedure
(fllog fl1 fl2) procedure
(flsin fl) procedure
(flcos fl) procedure
(fltan fl) procedure
(flasin fl) procedure
(flatan fl) procedure
(flatan fl1 fl2) procedure

These procedures compute the usual transcendental func-
tions. The flexp procedure computes the base-e expo-
nential of fl . The fllog procedure with a single argument
computes the natural logarithm of fl (not the base ten loga-
rithm); (fllog fl1 fl2) computes the base-fl2 logarithm of
fl1. The flasin, flacos, and flatan procedures compute
arcsine, arccosine, and arctangent, respectively. (flatan
fl1 fl2) computes the arc tangent of fl1/fl2.

See section 16.2.2 for the underlying mathematical opera-
tions. In the event that these operations do not yield a real
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result for the given arguments, the result may be a NaN,
or may be some meaningless flonum.

Implementations that use IEEE binary floating point arith-
metic are encouraged to follow the relevant standards for
these procedures.

(flexp +inf.0) =⇒ +inf.0

(flexp -inf.0) =⇒ 0.0

(fllog +inf.0) =⇒ +inf.0

(fllog 0.0) =⇒ -inf.0

(fllog -0.0) =⇒ unspecified
; if -0.0 is distinguished

(fllog -inf.0) =⇒ +nan.0

(flatan -inf.0)

=⇒ -1.5707963267948965

; approximately

(flatan +inf.0)

=⇒ 1.5707963267948965

; approximately

(flsqrt fl) procedure

Returns the principal square root of fl . For a negative ar-
gument, the result may be a NaN, or may be some mean-
ingless flonum.

(flsqrt +inf.0) =⇒ +inf.0

(flexpt fl1 fl2) procedure

Returns fl1 raised to the power fl2. fl1 should be non-
negative; if fl1 is negative, then the result may be a NaN,
or may be some meaningless flonum. If fl1 is zero, then the
result is zero. For positive fl1,

flfl2
1 = efl2 log fl1

&no-infinities condition type
(no-infinities? obj) procedure
&no-nans condition type
(no-nans? obj) procedure

These condition types could be defined by the following
code:

(define-condition-type &no-infinities

&implementation-restriction

no-infinities?)

(define-condition-type &no-nans

&implementation-restriction

no-nans?)

These types describe that a program has executed an arith-
metic operations that is specified to return an infinity or a
NaN, respectively, on a Scheme implementation that is not
able to represent the infinity or NaN. (See section 16.1.)

(fixnum->flonum fx) procedure

Returns a flonum that is numerically closest to fx .

Note: The result of this procedure may not be numerically

equal to fx , because the fixnum precision may be greater than

the flonum precision.

16.5. Exact arithmetic

This section describes the (r6rs arithmetic exact) li-
brary.

The exact arithmetic provides generic operations on exact
numbers; these operations correspond to their mathemat-
ical counterparts. The exact numbers include rationals of
arbitrary precision, and exact rectangular complex num-
bers. A rational number with a denominator of 1 is in-
distinguishable from its numerator. An exact rectangular
complex number with a zero imaginary part is indistin-
guishable from its real part.

(exact-number? ex) procedure
(exact-complex? ex) procedure
(exact-rational? ex) procedure
(exact-integer? ex) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is an exact number of the named type, and otherwise
return #f. In general, if a type predicate is true of a number
then all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

This section uses ex , ex1, ex2, and ex3 as parameter names
for arguments that must be exact complex numbers, ef ,
ef1, ef2, and ef3 as parameter names for arguments that
must be exact rational numbers, and ei , ei1, ei2, and ei3
as parameter names that must be exact integers.

(exact=? ex1 ex2 ex3 . . . ) procedure
(exact>? ef1 ef2 ef3 . . . ) procedure
(exact<? ef1 ef2 ef3 . . . ) procedure
(exact>=? ef1 ef2 ef3 . . . ) procedure
(exact<=? ef1 ef2 ef3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing #f otherwise.
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(exact-zero? ex) procedure
(exact-positive? ef ) procedure
(exact-negative? ef ) procedure
(exact-odd? ei) procedure
(exact-even? ei) procedure

These numerical predicates test an exact number for
a particular property, returning #t or #f. The
exact-zero? procedure tests if the number is exact=?
to zero, exact-positive? tests if it is greater than zero,
exact-negative? tests if it is less than zero, exact-odd?
tests if it is odd, exact-even? tests if it is even.

(exact-max ef1 ef2 . . . ) procedure
(exact-min ef1 ef2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(exact+ ex1 ex2 . . . ) procedure
(exact* ex1 ex2 . . . ) procedure

These procedures return the sum or product of their argu-
ments.

(exact- ex1 ex2 . . . ) procedure
(exact- ex) procedure
(exact/ ex1 ex2 . . . ) procedure
(exact/ ex) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to
the left. With one argument, however, they return the
additive or multiplicative inverse of their argument. The
exact/ procedure raises an exception with condition type
&contract if a divisor is 0.

(exact-abs ef ) procedure

Returns the absolute value of ef .

(exact-div+mod ef1 ef2) procedure
(exact-div ef1 ef2) procedure
(exact-mod ef1 ef2) procedure
(exact-div0+mod0 ef1 ef2) procedure
(exact-div0 ef1 ef2) procedure
(exact-mod0 ef1 ef2) procedure

Ef2 must be nonzero. These procedures implement
number-theoretic integer division and return the results
of the corresponding mathematical operations specified in
section 16.2.1.

(exact-div ef1 ef2) =⇒ ef1 div ef2
(exact-mod ef1 ef2) =⇒ ef1 mod ef2
(exact-div+mod ef1 ef2)

=⇒ ef1 div ef2, ef1 mod ef2
; two return values

(exact-div0 ef1 ef2) =⇒ ef1 div0 ef2
(exact-mod0 ef1 ef2) =⇒ ef1 mod0 ef2
(exact-div0+mod0 ef1 ef2)

=⇒ ef1 div0 ef2, ef1 mod0 ef2
; two return values

(exact-gcd ei1 ei2 . . . ) procedure
(exact-lcm ei1 ei2 . . . ) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments.

(exact-numerator ef ) procedure
(exact-denominator ef ) procedure

These procedures return the numerator or denominator of
their argument. The result is computed as if the argument
were represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(exact-floor ef ) procedure
(exact-ceiling ef ) procedure
(exact-truncate ef ) procedure
(exact-round ef ) procedure

These procedures return exact integers. The exact-floor
procedure returns the largest integer not larger than ef .
The exact-ceiling procedure returns the smallest inte-
ger not smaller than ef . The exact-truncate procedure
returns the integer closest to ef whose absolute value is not
larger than the absolute value of ef . The exact-round pro-
cedure returns the closest integer to ef , rounding to even
when ef is halfway between two integers.

(exact-expt ef1 ei2) procedure

Returns ef1 raised to the power ei2. 0ei is 1 if ei = 0 and 0
if ei is positive. If ef1 is zero and ei2 is negative, this pro-
cedure raises an exception with condition type &contract.

(exact-make-rectangular ef1 ef2) procedure
(exact-real-part ex) procedure
(exact-imag-part ex) procedure

The arguments of exact-make-rectangular must be ex-
act rationals. Suppose ex is a complex number such that

ex = ef1 + ef2i.

Then:

(exact-make-rectangular ef1 ef2)
=⇒ ex

(exact-real-part ex) =⇒ ef1
(exact-imag-part ex) =⇒ ef2



104 Revised5.91 Scheme

(exact-sqrt ei) procedure

Ei must be non-negative. The exact-sqrt procedure
returns two non-negative exact integers s and r where
ei = s2 + r and ei < (s + 1)2.

(exact-not ei) procedure

Returns the exact integer whose two’s complement repre-
sentation is the one’s complement of the two’s complement
representation of ei .

(exact-and ei1 . . . ) procedure
(exact-ior ei1 . . . ) procedure
(exact-xor ei1 . . . ) procedure

These procedures return the exact integer that is the bit-
wise “and,” “inclusive or,” or “exclusive or” of the two’s
complement representations of their arguments. If they
are passed only one argument, they return that argument.
If they are passed no arguments, they return the integer
(either −1 or 0) that acts as identity for the operation.

(exact-if ei1 ei2 ei3) procedure

Returns the exact integer that is the result of the following
computation:

(exact-ior (exact-and ei1 ei2)
(exact-and (exact-not ei1) ei3))

(exact-bit-count ei) procedure

If ei is non-negative, this procedure returns the number of
1 bits in the two’s complement representation of ei . Other-
wise it returns the number of 0 bits in the two’s complement
representation of ei .

(exact-length ei) procedure

These procedures return the exact integer that is the result
of the following computation:

(do ((result 0 (+ result 1))

(bits (if (exact-negative? ei)
(exact-not ei)
ei)

(exact-arithmetic-shift bits -1)))

((exact-zero? bits)

result))

(exact-first-bit-set ei) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of ei . If ei is 0, then −1 is
returned.

(exact-first-bit-set 0) =⇒ -1

(exact-first-bit-set 1) =⇒ 0

(exact-first-bit-set -4) =⇒ 2

(exact-bit-set? ei1 ei2) procedure

Ei2 must be non-negative.

Otherwise returns the result of the following computa-
tion:

(not (exact-zero?

(exact-and

(exact-arithmetic-shift-left 1 ei2)
ei1)))

(exact-copy-bit ei1 ei2 ei3) procedure

Ei2 must be non-negative, and ei3 must be either 0 or 1.
The exact-copy-bit procedure returns the result of the
following computation:

(let* ((mask (exact-arithmetic-shift-left 1 ei2)))
(exact-if mask

(exact-arithmetic-shift-left ei3 ei2)
ei1))

(exact-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less
than or equal to ei3. This procedure returns the result of
the following computation:

(let* ((mask

(exact-not

(exact-arithmetic-shift-left -1 ei3))))
(exact-arithmetic-shift-right

(exact-and ei1 mask)

ei2))

(exact-copy-bit-field ei1 ei2 ei3 ei4) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than
or equal to ei3. The exact-copy-bit-field procedure
returns the result of the following computation:

(let* ((to ei1)
(start ei2)
(end ei3)
(from ei4)
(mask1

(exact-arithmetic-shift-left -1 start))

(mask2

(exact-not

(exact-arithmetic-shift-left -1 end)))

(mask (exact-and mask1 mask2)))

(exact-if mask

(exact-arithmetic-shift-left from

start)

to))

(exact-arithmetic-shift ei1 ei2) procedure

Returns the exact integer result of the following computa-
tion:

(exact-floor (* ei1 (expt 2 ei2)))
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(exact-arithmetic-shift-left ei1 ei2) procedure
(exact-arithmetic-shift-right ei1 ei2) procedure

Ei2 must be non-negative.
exact-arithmetic-shift-left returns the
same result as exact-arithmetic-shift, and
(exact-arithmetic-shift-right ei1 ei2) returns the
same result as (exact-arithmetic-shift ei1 (exact-
ei2)).

(exact-rotate-bit-field ei1 ei2 ei3 ei4) procedure

Ei2, ei3, ei4 must be non-negative, and ei4 must be less
than the difference between ei2 and ei3. The procedure
returns the result of the following computation:

(let* ((n ei1)
(start ei2)
(end ei3)
(count ei4)
(width (exact- end start)))

(if (exact-positive? width)

(let* ((count (exact-mod count width))

(field0

(exact-bit-field n start end))

(field1 (exact-arithmetic-shift-left

field0 count))

(field2 (exact-arithmetic-shift-right

field0

(exact- width count)))

(field (exact-ior field1 field2)))

(exact-copy-bit-field n start end field))

n))

(exact-reverse-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than
or equal to ei3. The exact-reverse-bit-field procedure
returns the result obtained from the ei1 by reversing the
bit field specified by ei2 and ei3.

(exact-reverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

(exact-reverse-bit-field #1010010 91 -4)

=⇒ &contract exception

16.6. Inexact arithmetic

This section describes the (r6rs arithmetic inexact)
library.

The inexact arithmetic provides generic operations on in-
exact numbers. The inexact numbers include inexact reals
and inexact complex numbers, both of which are distin-
guishable from the exact numbers. The inexact complex
numbers include the flonums, and the procedures described
here behave consistently with the corresponding flonum
procedures if passed flonum arguments.

(inexact-number? obj) procedure
(inexact-complex? obj) procedure
(inexact-real? obj) procedure
(inexact-rational? obj) procedure
(inexact-integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if
the object is an inexact number of the named type, and
otherwise they return #f. In general, if a type predicate is
true of a number then all higher type predicates are also
true of that number. Consequently, if a type predicate is
false of a number, then all lower type predicates are also
false of that number.
This section uses in, in1, in2, and in3 as parameter names
for arguments that must be inexact numbers, ir , ir1, ir2,
and ir3 as parameter names for arguments that must be in-
exact real numbers, if , if1, if2, and if3 as parameter names
for arguments that must be inexact rationals, and ii , ii1,
ii2, and ii3 as parameter names for arguments that must
be the inexact integers.

(inexact=? in1 in2 in3 . . . ) procedure
(inexact>? ir1 ir2 ir3 . . . ) procedure
(inexact<? ir1 ir2 ir3 . . . ) procedure
(inexact>=? ir1 ir2 ir3 . . . ) procedure
(inexact<=? ir1 ir2 ir3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing #f otherwise. These predicates are required
to be transitive.

(inexact-zero? in) procedure
(inexact-positive? ir) procedure
(inexact-negative? ir) procedure
(inexact-odd? ii) procedure
(inexact-even? ii) procedure
(inexact-finite? in) procedure
(inexact-infinite? in) procedure
(inexact-nan? in) procedure

These numerical predicates test an inexact number
for a particular property, returning #t or #f. The
inexact-zero? procedure tests if the number is inexact=?
to zero, inexact-positive? tests if it is greater than
zero, inexact-negative? tests if it is less than zero,
inexact-odd? tests if it is odd, inexact-even? tests if it
is even, inexact-finite? tests if it is not an infinity and
not a NaN, inexact-infinite? tests if it is an infinity,
and inexact-nan? tests if it is a NaN.

(inexact-max ir1 ir2 . . . ) procedure
(inexact-min ir1 ir2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.
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(inexact+ in1 in2 . . . ) procedure
(inexact* in1 in2 . . . ) procedure

These procedures return the sum or product of their argu-
ments.

(inexact- in1 in2 . . . ) procedure
(inexact- in) procedure
(inexact/ in1 in2 . . . ) procedure
(inexact/ in) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument.

(inexact-abs in) procedure

Returns the absolute value of its argument.

(inexact-div+mod ir1 ir2) procedure
(inexact-div ir1 ir2) procedure
(inexact-mod ir1 ir2) procedure
(inexact-div0+mod0 ir1 ir2) procedure
(inexact-div0 ir1 ir2) procedure
(inexact-mod0 ir1 ir2) procedure

Ir1 must be neither infinite nor a NaN, and ir2 must be
nonzero. These procedures implement number-theoretic
integer division and return the results of the corresponding
mathematical operations specified in section 16.2.1.

(inexact-div ir1 ir2) =⇒ ir1 div ir2
(inexact-mod ir1 ir2) =⇒ ir1 mod ir2
(inexact-div+mod ir1 ir2)

=⇒ ir1 div ir2, ir1 mod ir2
; two return values

(inexact-div0 ir1 ir2) =⇒ ir1 div0 ir2
(inexact-mod0 ir1 ir2) =⇒ ir1 mod0 ir2
(inexact-div0+mod0 ir1 ir2)

=⇒ ir1 div0 ir2, ir1 mod0 ir2
; two return values

(inexact-gcd ii1 ii2 . . . ) procedure
(inexact-lcm ii1 ii2 . . . ) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments.

(inexact-numerator if ) procedure
(inexact-denominator if ) procedure

These procedures return the numerator or denominator of
if . The result is computed as if if was represented as a
fraction in lowest terms. The denominator is always posi-
tive. The denominator of 0.0 is defined to be 1.0.

(inexact-floor ir) procedure
(inexact-ceiling ir) procedure
(inexact-truncate ir) procedure
(inexact-round ir) procedure

These procedures return inexact integers for real argu-
ments that are not infinities or NaNs. For such arguments,
inexact-floor returns the largest integer not larger than
ir . The inexact-ceiling procedure returns the small-
est integer not smaller than ir . The inexact-truncate
procedure returns the integer closest to in whose abso-
lute value is not larger than the absolute value of in. The
inexact-round procedure returns the closest integer to in,
rounding to even when in is halfway between two integers.

Rationale: The inexact-round procedure rounds to even for

consistency with the default rounding mode specified by the

IEEE floating point standard.

Although infinities and NaNs are not integers, these pro-
cedures return an infinity when given an infinity as an ar-
gument, and a NaN when given a NaN.

(inexact-exp in) procedure
(inexact-log in) procedure
(inexact-log in1 in2) procedure
(inexact-sin in) procedure
(inexact-cos in) procedure
(inexact-tan in) procedure
(inexact-asin in) procedure
(inexact-atan in) procedure
(inexact-atan ir1 ir2) procedure

These procedures compute the usual transcendental func-
tions. The inexact-exp procedure computes the base-
e exponential of in. The inexact-log procedure with
a single argument computes the natural logarithm of
in (not the base ten logarithm); (inexact-log in1

in2) computes the base-in2 logarithm of in1. The
inexact-asin, inexact-acos, and inexact-atan proce-
dures compute arcsine, arccosine, and arctangent, respec-
tively. The two-argument variant of inexact-atan com-
putes (inexact-angle (inexact-make-rectangular ir1
ir2)) (see below).

See section 16.2.2 for the underlying mathematical opera-
tions. In the event that these operations do not yield a real
result for the given arguments, the result may be +nan.0,
or may be some meaningless inexact number.

(inexact-sqrt in) procedure

Returns the principal square root of in. For a negative
argument, the result may be +nan.0, or may be some
meaningless inexact number. With log defined as in sec-
tion 16.2.2, the value of (inexact-sqrt in) could be ex-
pressed as
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e
log in

2 .

(inexact-expt in1 in2) procedure

Returns in1 raised to the power in2. For nonzero in1,

in1
in2 = ein2 log in1

0.0in is 1 if in = 0.0, and 0.0 if (inexact-real-part
in) is positive. Otherwise, for nonzero in1, this
procedure raises an exception with condition type
&implementation-restriction or returns an unspecified
number.

(inexact-make-rectangular ir1 ir2) procedure
(inexact-make-polar ir1 ir2) procedure
(inexact-real-part in) procedure
(inexact-imag-part in) procedure
(inexact-magnitude in) procedure
(inexact-angle in) procedure

Suppose ir1, ir2, ir3, and ir4 are inexact real numbers, and
ir is a complex number, such that

ir = ir1 + ir2i = ir3eiir4 .

Then (inexactly):

(inexact-make-rectangular ir1 ir2)
=⇒ ir

(inexact-make-rectangular ir3 ir4)
=⇒ ir

(inexact-real-part ir) =⇒ ir1
(inexact-imag-part ir) =⇒ ir2
(inexact-magnitude ir) =⇒ |ir3|
(inexact-angle ir) =⇒ irangle

where −π ≤ irangle ≤ π with irangle = ir4 + 2πn for some
integer n.

(inexact-angle -1.0) =⇒ π
(inexact-angle -1.0+0.0) =⇒ π
(inexact-angle -1.0-0.0) =⇒ -π

; if -0.0 is distinguished

Moreover, suppose ir1, ir2 are such that either ir1 or ir2 is
an infinity, then

(inexact-make-rectangular ir1 ir2)
=⇒ ir

(inexact-magnitude ir) =⇒ +inf.0

17. syntax-case

The (r6rs syntax-case) library provides support for
writing low-level macros in a high-level style, with au-
tomatic syntax checking, input destructuring, output re-
structuring, maintenance of lexical scoping and referential

transparency (hygiene), and support for controlled identi-
fier capture.

Rationale: While many syntax transformers are succinctly ex-
pressed using the high-level syntax-rules form, others are diffi-
cult or impossible to write, including some that introduce visible
bindings for or references to identifiers that do not appear ex-
plicitly in the input form, ones that maintain state or read from
the file system, and ones that construct new identifiers. The
syntax-case system [14] described here allows the program-
mer to write transformers that perform these sorts of trans-
formations, and arbitrary additional transformations, without
sacrificing the default enforcement of hygiene or the high-level
pattern-based syntax matching and template-based output con-
struction provided by syntax-rules (section 9.21).

Because syntax-case does not require literals, including quoted

lists or vectors, to be copied or even traversed, it may be able

to preserve sharing and cycles within and among the constants

of a program. It also supports source-object correlation, i.e.,

the maintenance of ties between the original source code and

expanded output, allowing implementations to provide source-

level support for debuggers and other tools.

17.1. Hygiene

Barendregt’s hygiene condition [2] for the lambda-calculus
is an informal notion that requires the free variables of an
expression N that is to be substituted into another expres-
sion M not to be captured by bindings in M when such
capture is not intended. Kohlbecker, et al [32] propose a
corresponding hygiene condition for macro expansion that
applies in all situations where capturing is not explicit:
“Generated identifiers that become binding instances in
the completely expanded program must only bind vari-
ables that are generated at the same transcription step.”
In the terminology of this document, the “generated iden-
tifiers” are those introduced by a transformer rather than
those present in the form passed to the transformer, and a
“macro transcription step” corresponds to a single call by
the expander to a transformer. Also, the hygiene condition
applies to all introduced bindings rather than to introduced
variable bindings alone.

This leaves open what happens to an introduced identifier
that appears outside the scope of a binding introduced by
the same call. Such an identifier refers to the lexical bind-
ing in effect where it appears (within a syntax 〈template〉;
see section 17.4) inside the transformer body or one of the
helpers it calls. This is essentially the referential trans-
parency property described by Clinger and Rees [10].

Thus, the hygiene condition can be restated as follows:

A binding for an identifier introduced into the
output of a transformer call from the expander
must capture only references to the identifier in-
troduced into the output of the same transformer
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call. A reference to an identifier introduced into
the output of a transformer refers to the closest
enclosing binding for the introduced identifier or,
if it appears outside of any enclosing binding for
the introduced identifier, the closest enclosing lex-
ical binding where the identifier appears (within
a syntax 〈template〉) inside the transformer body
or one of the helpers it calls.

Explicit captures are handled via datum->syntax; see sec-
tion 17.6.

Operationally, the expander can maintain hygiene with the
help of marks and substitutions. Marks are applied selec-
tively by the expander to the output of each transformer
it invokes, and substitutions are applied to the portions
of each binding form that are supposed to be within the
scope of the bound identifiers. Marks are used to distin-
guish like-named identifiers that are introduced at different
times (either present in the source or introduced into the
output of a particular transformer call), and substitutions
are used to map identifiers to their expand-time values.

Each time the expander encounters a macro use, it ap-
plies an antimark to the input form, invokes the associ-
ated transformer, then applies a fresh mark to the output.
Marks and antimarks cancel, so the portions of the input
that appear in the output are effectively left unmarked,
while the portions of the output that are introduced are
marked with the fresh mark.

Each time the expander encounters a binding form it cre-
ates a set of substitutions, each mapping one of the (pos-
sibly marked) bound identifiers to information about the
binding. (For a lambda expression, the expander might
map each bound identifier to a representation of the for-
mal parameter in the output of the expander. For a
let-syntax form, the expander might map each bound
identifier to the associated transformer.) These substitu-
tions are applied to the portions of the input form in which
the binding is supposed to be visible.

Marks and substitutions together form a wrap that is lay-
ered on the form being processed by the expander and
pushed down toward the leaves as necessary. A wrapped
form is referred to as a wrapped syntax object. Ultimately,
the wrap may rest on a leaf that represents an identifier, in
which case the wrapped syntax object is referred to more
precisely as an identifier. An identifier contains a name
along with the wrap. (Names are typically represented by
symbols.)

When a substitution is created to map an identifier to an
expand-time value, the substitution records the name of
the identifier and the set of marks that have been ap-
plied to that identifier, along with the associated expand-
time value. The expander resolves identifier references by
looking for the latest matching substitution to be applied

to the identifier, i.e., the outermost substitution in the
wrap whose name and marks match the name and marks
recorded in the substitution. The name matches if it is the
same name (if using symbols, then by eq?), and the marks
match if the marks recorded with the substitution are the
same as those that appear below the substitution in the
wrap, i.e., those that were applied before the substitution.
Marks applied after a substitution, i.e., appear over the
substitution in the wrap, are not relevant and are ignored.

An algebra that defines how marks and substitutions work
more precisely is given in section 2.4 of Oscar Waddell’s
PhD thesis [52].

17.2. Syntax objects

A syntax object is a representation of a Scheme form that
contains contextual information about the form in addi-
tion to its structure. This contextual information is used
by the expander to maintain lexical scoping and may also
be used by an implementation to maintain source-object
correlation.

Syntax objects may be wrapped or unwrapped. A wrapped
syntax object (section 17.1), consists of a wrap (sec-
tion 17.1) and some internal representation of a Scheme
form. (The internal representation is unspecified, but is
typically a datum value or datum value annotated with
source information.) A wrapped syntax object represent-
ing an identifier is itself referred to as an identifier; thus,
the term identifier may refer either to the syntactic entity
(symbol, variable, or keyword) or to the concrete represen-
tation of the syntactic entity as a syntax object. Wrapped
syntax objects are distinct from other types of values.

An unwrapped syntax object is one that is unwrapped,
fully or partially, i.e., whose outer layers consist of lists
and vectors and whose leaves are either wrapped syntax
objects or nonsymbol values.

The term syntax object is used in this document to refer
to a syntax object that is either wrapped or unwrapped.
More formally, a syntax object is:

• a pair or list of syntax objects,

• a vector of syntax objects,

• a nonlist, nonvector, nonsymbol value, or

• a wrapped syntax object.

The distinction between the terms “syntax object” and
“wrapped syntax object” is important. For example, when
invoked by the expander, a transformer (section 17.3) must
accept a wrapped syntax object but may return any syntax
object, including an unwrapped syntax object.
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17.3. Transformers

In define-syntax (section 9.3), let-syntax, and
letrec-syntax forms (section 9.20), a binding for a
syntactic keyword must be a 〈transformer spec〉. A
〈transformer spec〉 must be an expression that evaluates
to a transformer.

A transformer is a transformation procedure or a variable
transformer. A transformation procedure is a procedure
that must accept one argument, a wrapped syntax object
(section 17.2) representing the input, and return a syntax
object (section 17.2) representing the output. The proce-
dure is called by the expander whenever a reference to a
keyword with which it has been associated is found. If the
keyword appears in the first position of a list-structured in-
put form, the transformer receives the entire list-structured
form, and its output replaces the entire form. If the key-
word is found in any other declaration, definition or ex-
pression context, the transformer receives a wrapped syn-
tax object representing just the keyword reference, and its
output replaces just the reference. Except with variable
transformers (see below), an exception with condition type
&syntax is raised if the keyword appears on the left-hand
side of a set! expression.

(make-variable-transformer proc) procedure

Proc must be a procedure that accepts one argument, a
wrapped syntax object.

The make-variable-transformer procedure creates a
variable transformer. A variable transformer is like an or-
dinary transformer except that, if a keyword associated
with a variable transformer appears on the left-hand side
of a set! expression, an exception is not raised. Instead,
proc is called with a wrapped syntax object representing
the entire set! expression as its argument, and its return
value replaces the entire set! expression.

17.4. Parsing input and producing output

Transformers destructure their input with syntax-case
and rebuild their output with syntax.

(syntax-case 〈expression〉 (〈literal〉 ...) 〈clause〉 ...)
syntax

Syntax: Each 〈literal〉 must be an identifier. Each 〈clause〉
must take one of the following two forms.

(〈pattern〉 〈output expression〉)
(〈pattern〉 〈fender〉 〈output expression〉)

〈Fender〉 and 〈output expression〉 must be 〈expression〉s.
A 〈pattern〉 is an identifier, constant, or one of the follow-
ing.

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 ... . 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ... . 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

An identifier appearing within a 〈pattern〉 may be an un-
derscore ( ), a literal identifier listed in the list of literals
(〈literal〉 ...), or an ellipsis ( ... ). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 ...).

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax viola-
tion if the same pattern variable appears more than once
in a 〈pattern〉.

Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.

A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two
identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ( ).

• P is a pattern variable.

• P is a literal identifier and F is an equivalent identifier
in the sense of free-identifier=? (section 17.5).

• P is of the form (P1 ... Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 ... Pn . Px) and F is a list
or improper list of n or more elements whose first n
elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn), where 〈ellipsis〉 is the identifier ... and F is a
proper list of n elements whose first k elements match
P1 through Pk, whose next m−k elements each match
Pe, and whose remaining n−m elements match Pm+1

through Pn.
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• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n − m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 ... Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 ... Pk Pe 〈ellipsis〉 Pm+1

... Pn), where 〈ellipsis〉 is the identifier ... and F is
a vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

Semantics: syntax-case first evaluates 〈expression〉. It
then attempts to match the 〈pattern〉 from the first 〈clause〉
against the resulting value, which is unwrapped as nec-
essary to perform the match. If the pattern matches
the value and no 〈fender〉 is present, 〈output expression〉
is evaluated and its value returned as the value of the
syntax-case expression. If the pattern does not match
the value, syntax-case tries the second 〈clause〉, then the
third, and so on. It is a syntax violation if the value does
not match any of the patterns.

If the optional 〈fender〉 is present, it serves as an additional
constraint on acceptance of a clause. If the 〈pattern〉 of a
given 〈clause〉 matches the input value, the corresponding
〈fender〉 is evaluated. If 〈fender〉 evaluates to a true value,
the clause is accepted; otherwise, the clause is rejected as
if the pattern had failed to match the value. Fenders are
logically a part of the matching process, i.e., they specify
additional matching constraints beyond the basic structure
of the input.

Pattern variables contained within a clause’s 〈pattern〉 are
bound to the corresponding pieces of the input value within
the clause’s 〈fender〉 (if present) and 〈output expression〉.
Pattern variables can be referenced only within syntax ex-
pressions (see below). Pattern variables occupy the same
name space as program variables and keywords.

(syntax 〈template〉) syntax

Note: #’〈template〉 is equivalent to (syntax 〈template〉).

A syntax expression is similar to a quote expression except
that (1) the values of pattern variables appearing within

〈template〉 are inserted into 〈template〉, (2) contextual in-
formation associated both with the input and with the tem-
plate is retained in the output to support lexical scoping,
and (3) the value of a syntax expression is a syntax object.

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 ... . 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

The value of a syntax form is a copy of 〈template〉 in which
the pattern variables appearing within the template are re-
placed with the input subforms to which they are bound.
Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur
in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a
syntax violation if the consraints of this paragraph are not
met.

A template of the form (〈ellipsis〉 〈template〉) is identical
to 〈template〉, except that ellipses within the template have
no special meaning. That is, any ellipses contained within
〈template〉 are treated as ordinary identifiers. In particu-
lar, the template (... ...) produces a single ellipsis. This
allows macro uses to expand into forms containing ellipses.

The output produced by syntax is wrapped or unwrapped
according to the following rules.

• the copy of (〈t1〉 . 〈t2〉) is a pair if 〈t1〉 or 〈t2〉 contain
any pattern variables,

• the copy of (〈t〉 〈ellipsis〉) is a list if 〈t〉 contains any
pattern variables,

• the copy of #(〈t1〉 ... 〈tn〉) is a vector if any of
〈t1〉, . . . , 〈tn〉 contain any pattern variables, and

• the copy of any portion of 〈t〉 not containing any pat-
tern variables is a wrapped syntax object.
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The input subforms inserted in place of the pattern vari-
ables are wrapped if and only if the corresponding input
subforms are wrapped.

The following definitions of or illustrate syntax-case and
syntax. The second is equivalent to the first but uses the
the #’ prefix instead of the full syntax form.

(define-syntax or

(lambda (x)

(syntax-case x ()

[( ) (syntax #f)]

[( e) (syntax e)]

[( e1 e2 e3 ...)

(syntax (let ([t e1])

(if t t (or e2 e3 ...))))])))

(define-syntax or

(lambda (x)

(syntax-case x ()

[( ) #’#f]

[( e) #’e]

[( e1 e2 e3 ...)

#’(let ([t e1])

(if t t (or e2 e3 ...)))])))

(define-syntax case

(lambda (x)

(syntax-case x (else)

[( e0 [(k ...) e1 e2 ...] ...

[else else-e1 else-e2 ...])

#’(let ([t e0])

(cond

[(memv t ’(k ...)) e1 e2 ...]

...

[else else-e1 else-e2 ...]))]

[( e0 [(ka ...) e1a e2a ...]

[(kb ...) e1b e2b ...] ...)

#’(let ([t e0])

(cond

[(memv t ’(ka ...)) e1a e2a ...]

[(memv t ’(kb ...)) e1b e2b ...]

...))])))

The examples below define identifier macros, macro uses
supporting keyword references that do not necessarily ap-
pear in the first position of a list-structured form. The sec-
ond example uses make-variable-transformer to handle
the case where the keyword appears on the left-hand side
of a set! expression.

(define p (cons 4 5))

(define-syntax p.car

(lambda (x)

(syntax-case x ()

[( . rest) #’((car p) . rest)]

[ #’(car p)])))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

(define p (cons 4 5))

(define-syntax p.car

(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! e) #’(set-car! p e)]

[( . rest) #’((car p) . rest)]

[ #’(car p)]))))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 5)

A derived identifier-syntax form that simplifies the def-
inition of identifier macros is described in section 17.8.

17.5. Identifier predicates

(identifier? obj) procedure

Returns #t if obj is an identifier, i.e., a syntax object rep-
resenting an identifier, and #f otherwise.

The identifier? procedure is often used within a fender
to verify that certain subforms of an input form are iden-
tifiers, as in the definition of rec, which creates self-
contained recursive objects, below.

(define-syntax rec

(lambda (x)

(syntax-case x ()

[( x e)

(identifier? #’x)

#’(letrec ([x e]) x)])))

(map (rec fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

’(1 2 3 4 5))

=⇒ (1 2 6 24 120)

(rec 5 (lambda (x) x)) =⇒ &syntax exception

The procedures bound-identifier=? and
free-identifier=? each take two identifier argu-
ments and return #t if their arguments are equivalent
and #f otherwise. These predicates are used to compare
identifiers according to their intended use as free references
or bound identifiers in a given context.

(bound-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The procedure
bound-identifier=? returns true if and only if a bind-
ing for one would capture a reference to the other in
the output of the transformer, assuming that the refer-
ence appears within the scope of the binding. In general,
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two identifiers are bound-identifier=? only if both are
present in the original program or both are introduced by
the same transformer application (perhaps implicitly—see
datum->syntax). Operationally, two identifiers are consid-
ered equivalent by bound-identifier=? if and only if they
have the same name and same marks (section 17.1).

The bound-identifier=? procedure can be used for de-
tecting duplicate identifiers in a binding construct or for
other preprocessing of a binding construct that requires
detecting instances of the bound identifiers.

(free-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The free-identifier=?
procedure returns #t if and only if the two identifiers would
resolve to the same binding if both were to appear in
the output of a transformer outside of any bindings in-
serted by the transformer. (If neither of two like-named
identifiers resolves to a binding, i.e., both are unbound,
they are considered to resolve to the same binding.) Op-
erationally, two identifiers are considered equivalent by
free-identifier=? if and only the topmost matching sub-
stitution for each maps to the same binding (section 17.1)
or the identifiers have the same name and no matching
substitution.

syntax-case and syntax-rules use free-identifier=?
to compare identifiers listed in the literals list against input
identifiers.

The following definition of unnamed let uses
bound-identifier=? to detect duplicate identifiers.

(define-syntax let

(lambda (x)

(define unique-ids?

(lambda (ls)

(or (null? ls)

(and (let notmem?

([x (car ls)] [ls (cdr ls)])

(or (null? ls)

(and (not (bound-identifier=?

x (car ls)))

(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))

(syntax-case x ()

[( ((i v) ...) e1 e2 ...)

(unique-ids? #’(i ...))

#’((lambda (i ...) e1 e2 ...) v ...)])))

The argument #’(i ...) to unique-ids? is guaranteed
to be a list by the rules given in the description of syntax
above.

With this definition of let:

(let ([a 3] [a 4]) (+ a a))

=⇒ &syntax exception

However,

(let-syntax

([dolet (lambda (x)

(syntax-case x ()

[( b)

#’(let ([a 3] [b 4]) (+ a b))]))])

(dolet a))

=⇒ 7

since the identifier a introduced by dolet and the
identifier a extracted from the input form are not
bound-identifier=?.

The following definition of case is equivalent to the one
in section 17.4. Rather than including else in the literals
list as before, this version explicitly tests for else using
free-identifier=?.

(define-syntax case

(lambda (x)

(syntax-case x ()

[( e0 [(k ...) e1 e2 ...] ...

[else-key else-e1 else-e2 ...])

(and (identifier? #’else-key)

(free-identifier=? #’else-key #’else))

#’(let ([t e0])

(cond

[(memv t ’(k ...)) e1 e2 ...]

...

[else else-e1 else-e2 ...]))]

[( e0 [(ka ...) e1a e2a ...]

[(kb ...) e1b e2b ...] ...)

#’(let ([t e0])

(cond

[(memv t ’(ka ...)) e1a e2a ...]

[(memv t ’(kb ...)) e1b e2b ...]

...))])))

With either definition of case, else is not recognized as an
auxiliary keyword if an enclosing lexical binding for else
exists. For example,

(let ([else #f])

(case 0 [else (write "oops")]))

=⇒ &syntax exception

since else is bound lexically and is therefore not the same
else that appears in the definition of case.

17.6. Syntax-object and datum conversions

(syntax->datum syntax-object) procedure

The procedure syntax->datum strips all syntactic informa-
tion from a syntax object and returns the corresponding
Scheme datum.
Identifiers stripped in this manner are converted to their
symbolic names, which can then be compared with eq?.
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Thus, a predicate symbolic-identifier=? might be de-
fined as follows.

(define symbolic-identifier=?

(lambda (x y)

(eq? (syntax->datum x)

(syntax->datum y))))

(datum->syntax template-id datum) procedure

Template-id must be a template identifier and datum
should be a datum value. The datum->syntax procedure
returns a syntax object representation of datum that con-
tains the same contextual information as template-id , with
the effect that the syntax object behaves as if it were in-
troduced into the code when template-id was introduced.

The datum->syntax procedure allows a transformer to
“bend” lexical scoping rules by creating implicit identi-
fiers that behave as if they were present in the input form,
thus permitting the definition of macros that introduce vis-
ible bindings for or references to identifiers that do not
appear explicitly in the input form. For example, the fol-
lowing defines a loop expression that uses this controlled
form of identifier capture to bind the variable break to
an escape procedure within the loop body. (The derived
with-syntax form is like let but binds pattern variables—
see section 17.8.)

(define-syntax loop

(lambda (x)

(syntax-case x ()

[(k e ...)

(with-syntax

([break (datum->syntax #’k ’break)])

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f)))))])))

(let ((n 3) (ls ’()))

(loop

(if (= n 0) (break ls))

(set! ls (cons ’a ls))

(set! n (- n 1))))

=⇒ (a a a)

Were loop to be defined as

(define-syntax loop

(lambda (x)

(syntax-case x ()

[( e ...)

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f))))])))

the variable break would not be visible in e ....

The datum argument datum may also represent an arbi-
trary Scheme form, as demonstrated by the following defi-
nition of include.

(define-syntax include

(lambda (x)

(define read-file

(lambda (fn k)

(let ([p (open-file-input-port fn)])

(let f ([x (get-datum p)])

(if (eof-object? x)

(begin (close-port p) ’())

(cons (datum->syntax k x)

(f (get-datum p))))))))

(syntax-case x ()

[(k filename)

(let ([fn (syntax->datum #’filename)])

(with-syntax ([(exp ...)

(read-file fn #’k)])

#’(begin exp ...)))])))

(include "filename") expands into a begin expres-
sion containing the forms found in the file named by
"filename". For example, if the file flib.ss contains
(define f (lambda (x) (g (* x x)))), and the file
glib.ss contains (define g (lambda (x) (+ x x))),
the expression

(let ()

(include "flib.ss")

(include "glib.ss")

(f 5))

evaluates to 50.

The definition of include uses datum->syntax to convert
the objects read from the file into syntax objects in the
proper lexical context, so that identifier references and
definitions within those expressions are scoped where the
include form appears.

Using datum->syntax, it is even possible to break hygiene
entirely and write macros in the style of old Lisp macros.
The lisp-transformer procedure defined below creates
a transformer that converts its input into a datum, calls
the programmer’s procedure on this datum, and converts
the result back into a syntax object that is scoped at top
level (or, more accurately, wherever lisp-transformer is
defined).

(define lisp-transformer

(lambda (p)

(lambda (x)

(datum->syntax #’lisp-transformer

(p (syntax->datum x))))))

Using lisp-transformer, defining a basic version of Com-
mon Lisp’s defmacro is a straightforward exercise.

17.7. Generating lists of temporaries

Transformers can introduce a fixed number of identifiers
into their output simply by naming each identifier. In
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some cases, however, the number of identifiers to be in-
troduced depends upon some characteristic of the input
expression. A straightforward definition of letrec, for
example, requires as many temporary identifiers as there
are binding pairs in the input expression. The procedure
generate-temporaries is used to construct lists of tem-
porary identifiers.

(generate-temporaries l) procedure

L must be be a list or syntax object representing a list-
structured form; its contents are not important. The num-
ber of temporaries generated is the number of elements in l .
Each temporary is guaranteed to be unique, i.e., different
from all other identifiers.

A definition of letrec that uses generate-temporaries
is shown below.

(define-syntax letrec

(lambda (x)

(syntax-case x ()

(( ((i v) ...) e1 e2 ...)

(with-syntax

(((t ...)

(generate-temporaries (syntax (i ...)))))

(syntax (let ((i #f) ...)

(let ((t v) ...)

(set! i t) ...

(let () e1 e2 ...)))))))))

Any transformer that uses generate-temporaries in this
fashion can be rewritten to avoid using it, albeit with a loss
of clarity. The trick is to use a recursively defined inter-
mediate form that generates one temporary per expansion
step and completes the expansion after enough temporaries
have been generated. See the definition for letrec in ap-
pendix B.

17.8. Derived forms and procedures

The forms and procedures described in this section are de-
rived, i.e., they can defined in terms of the forms and pro-
cedures described in earlier sections of this document.

The definitions of p.car in section 17.4 demonstrated how
identifier macros might be written using syntax-case.
Many identifier macros can be defined more succinctly us-
ing the derived identifier-syntax form.

(identifier-syntax 〈template〉) syntax
(identifier-syntax (〈id1〉 〈template1〉) syntax

((set! 〈id2〉 〈pattern〉)
〈template2〉))

Syntax: The 〈id〉s must be identifiers.

Semantics: When a keyword is bound to a transformer
produced by the first form of identifier-syntax, refer-
ences to the keyword within the scope of the binding are
replaced by 〈template〉.

(define p (cons 4 5))

(define-syntax p.car (identifier-syntax (car p)))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

The second, more general, form of identifier-syntax
permits the transformer to determine what happens when
set! is used. In this case, uses of the identifier by itself are
replaced by 〈template1〉, and uses of set! with the identi-
fier are replaced by 〈template2〉.

(define p (cons 4 5))

(define-syntax p.car

(identifier-syntax

[ (car p)]

[(set! e) (set-car! p e)]))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 5)

The identifier-syntax form may be defined in terms of
syntax-case, syntax, and make-variable-transformer
as follows.

(define-syntax identifier-syntax

(syntax-rules (set!)

[( e)

(lambda (x)

(syntax-case x ()

[id (identifier? #’id) #’e]

[( x (... ...)) #’(e x (... ...))]))]

[( (id exp1) ((set! var val) exp2))

(and (identifier? #’id) (identifier? #’var))

(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! var val) #’exp2]

[(id x (... ...)) #’(exp1 x (... ...))]

[id (identifier? #’id) #’exp1])))]))

(with-syntax ((〈pattern〉 〈expression〉) . . . ) 〈body〉)
syntax

The derived with-syntax form is used to bind pattern vari-
ables, just as let is used to bind variables. This allows a
transformer to construct its output in separate pieces, then
put the pieces together.

Each 〈pattern〉 is identical in form to a syntax-case pat-
tern. The value of each 〈expression〉 is computed and de-
structured according to the corresponding 〈pattern〉, and
pattern variables within the 〈pattern〉 are bound as with
syntax-case to the corresponding portions of the value
within 〈body〉.
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The with-syntax form may be defined in terms of
syntax-case as follows.

(define-syntax with-syntax

(lambda (x)

(syntax-case x ()

(( ((p e0) ...) e1 e2 ...)

(syntax (syntax-case (list e0 ...) ()

((p ...) (let () e1 e2 ...))))))))

The following definition of cond demonstrates the use of
with-syntax to support transformers that employ recur-
sion internally to construct their output. It handles all
cond clause variations and takes care to produce one-armed
if expressions where appropriate.

(define-syntax cond

(lambda (x)

(syntax-case x ()

[( c1 c2 ...)

(let f ([c1 #’c1] [c2* #’(c2 ...)])

(syntax-case c2* ()

[()

(syntax-case c1 (else =>)

[(else e1 e2 ...) #’(begin e1 e2 ...)]

[(e0) #’(let ([t e0]) (if t t))]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t)))]

[(e0 e1 e2 ...)

#’(if e0 (begin e1 e2 ...))])]

[(c2 c3 ...)

(with-syntax ([rest (f #’c2 #’(c3 ...))])

(syntax-case c1 (=>)

[(e0) #’(let ([t e0]) (if t t rest))]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t) rest))]

[(e0 e1 e2 ...)

#’(if e0

(begin e1 e2 ...)

rest)]))]))])))

(quasisyntax 〈template〉) syntax

Note: #`〈template〉 is equivalent to (quasisyntax

〈template〉), #,〈template〉 is equivalent to (unsyntax

〈template〉), and #,@〈template〉 is equivalent to

(unsyntax-splicing 〈template〉).

The quasisyntax form is similar to syntax, but it allows
parts of the quoted text to be evaluated, in a manner sim-
ilar to the operation of quasiquote (section 9.19).

Within a quasisyntax template, subforms of unsyntax
and unsyntax-splicing forms are evaluated, and every-
thing else is treated as ordinary template material, as
with syntax. The value of each unsyntax subform is
inserted into the output in place of the unsyntax form,
while the value of each unsyntax-splicing subform is
spliced into the surrounding list or vector structure. Uses

of unsyntax and unsyntax-splicing are valid only within
quasisyntax expressions.

A quasisyntax expression may be nested, with each
quasisyntax introducing a new level of syntax quota-
tion and each unsyntax or unsyntax-splicing taking
away a level of quotation. An expression nested within
n quasisyntax expressions must be within n unsyntax or
unsyntax-splicing expressions to be evaluated.

The quasisyntax keyword can be used in place of
with-syntax in many cases. For example, the definition of
case shown under the description of with-syntax above
can be rewritten using quasisyntax as follows.

(define-syntax case

(lambda (x)

(syntax-case x ()

[( e c1 c2 ...)

#`(let ([t e])

#,(let f ([c1 #’c1] [cmore #’(c2 ...)])

(if (null? cmore)

(syntax-case c1 (else)

[(else e1 e2 ...)

#’(begin e1 e2 ...)]

[((k ...) e1 e2 ...)

#’(if (memv t ’(k ...))

(begin e1 e2 ...))])

(syntax-case c1 ()

[((k ...) e1 e2 ...)

#`(if (memv t ’(k ...))

(begin e1 e2 ...)

#,(f (car cmore)

(cdr cmore)))]))))])))

Uses of unsyntax and unsyntax-splicing with zero or
more than one subform are valid only in splicing (list or
vector) contexts. (unsyntax template ...) is equivalent
to (unsyntax template) ..., and (unsyntax-splicing
template ...) is equivalent to (unsyntax-splicing
template) .... These forms are primarily useful as inter-
mediate forms in the output of the quasisyntax expander.

Note: Uses of unsyntax and unsyntax-splicing with zero

or more than one subform enable certain idioms [4], such as

#,@#,@, which has the effect of a doubly indirect splicing when

used within a doubly nested and doubly evaluated quasisyntax

expression, as with the nested quasiquote examples shown in

section 9.19.
Note: Any syntax-rules form can be expressed with
syntax-case by making the lambda expression and syntax ex-
pressions explicit, and syntax-rules may be defined in terms
of syntax-case as follows.

(define-syntax syntax-rules

(lambda (x)

(syntax-case x ()

[( (k ...) [( . p) f ... t] ...)

#’(lambda (x)

(syntax-case x (k ...)

[( . p) f ... #’t] ...))])))
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A more robust implementation would verify that the literals

〈literal〉 ... are all identifiers, that the first position of each

pattern is an identifier, and that at most one fender is present

in each clause.

17.9. Syntax violations

(syntax-violation who message form) procedure
(syntax-violation who message form subform)

procedure

Name must be #f or a string or a symbol. Message must
be a string. Form must be a syntax object or a datum
value. Subform must be a syntax object or a datum value.
The syntax-violation procedure raises an exception, re-
porting a syntax violation. The who argument should de-
scribe the macro transformer that detected the exception.
The message argument should describe the violation. The
form argument is the erroneous source syntax object or a
datum value representing a form. The optional subform
argument is a syntax object or datum value representing a
form that more precisely locates the violation.

If who is #f, syntax-violation attempts to infer an ap-
propriate value for the condition object (see below) as fol-
lows: When form is either an identifier or a list-structured
syntax object containing an identifier as its first element,
then the inferred value is the identifier’s symbol. Other-
wise, no value for who is provided as part of the condition
object.

The condition object provided with the exception (see
chapter 14) has the following condition types:

• If who is not #f or can be inferred, the condition has
condition type &who, with who as the value of the who
field. In that case, who should identify the procedure
or entity that detected the exception. If it is #f, the
condition does not have condition type &who.

• The condition has condition type &message, with
message as the value of the message field.

• The condition has condition type &syntax with form
as the value of the form field, and subform as the value
of the subform field. If subform is not provided, the
value of the subform field is #f.

18. Hash tables

The (r6rs hash-tables) library provides hash tables. A
hash table is a data structure that associates keys with val-
ues. Any object can be used as a key, provided a hash
function and a suitable equivalence function is available. A
hash function is a procedure that maps keys to integers,

and must be compatible with the equivalence function,
which is a procedure that accepts two keys and returns
true if they are equivalent, otherwise returns #f. Stan-
dard hash tables for arbitrary objects based on the eq?
and eqv? predicates (see section 9.6) are provided. Also,
standard hash functions for several types are provided.

This section uses the hash-table parameter name for argu-
ments that must be hash tables, and the key parameter
name for arguments that must be hash-table keys.

18.1. Constructors

(make-eq-hash-table) procedure
(make-eq-hash-table k) procedure

Returns a newly allocated mutable hash table that accepts
arbitrary objects as keys, and compares those keys with
eq?. If an argument is given, the initial capacity of the
hash table is set to approximately k elements.

(make-eqv-hash-table) procedure
(make-eqv-hash-table k) procedure

Returns a newly allocated mutable hash table that accepts
arbitrary objects as keys, and compares those keys with
eqv?. If an argument is given, the initial capacity of the
hash table is set to approximately k elements.

(make-hash-table hash-function equiv) procedure
(make-hash-table hash-function equiv k) procedure

Hash-function and equiv must be procedures.
Hash-function will be called by other procedures de-
scribed in this chapter with a key as argument, and
must return a non-negative exact integer. Equiv will
be called by other procedures described in this chapter
with two keys as arguments. The make-hash-table
procedure returns a newly allocated mutable hash table
using hash-function as the hash function and equiv as
the equivalence function used to compare keys. If a third
argument is given, the initial capacity of the hash table is
set to approximately k elements.

Both the hash function hash-function and the equivalence
function equiv should behave like pure functions on the do-
main of keys. For example, the string-hash and string=?
procedures are permissible only if all keys are strings and
the contents of those strings are never changed so long as
any of them continue to serve as a key in the hash table.
Furthermore any pair of values for which the equivalence
function equiv returns true should be hashed to the same
exact integers by hash-function.

Note: Hash tables are allowed to cache the results of calling

the hash function and equivalence function, so programs cannot
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rely on the hash function being called for every lookup or up-

date. Furthermore any hash-table operation may call the hash

function more than once.

Rationale: Hash-table lookups are often followed by updates,

so caching may improve performance. Hash tables are free to

change their internal representation at any time, which may

result in many calls to the hash function.

18.2. Procedures

(hash-table? hash-table) procedure

Returns #t if hash-table is a hash table, otherwise returns
#f.

(hash-table-size hash-table) procedure

Returns the number of keys contained in hash-table as an
exact integer.

(hash-table-ref hash-table key default) procedure

Returns the value in hash-table associated with key . If
hash-table does not contain an association for key , then
default is returned.

(hash-table-set! hash-table key obj) procedure

Changes hash-table to associate key with obj , adding a
new association or replacing any existing association for
key , and returns the unspecified value.

(hash-table-delete! hash-table key) procedure

Removes any association for key within hash-table, and
returns the unspecified value.

(hash-table-contains? hash-table key) procedure

Returns #t if hash-table contains an association for key ,
otherwise returns #f.

(hash-table-update! hash-table key proc default)
procedure

Proc must be a procedure that takes a single argument.
The hash-table-update! procedure applies proc to the
value in hash-table associated with key , or to default if
hash-table does not contain an association for key . The
hash-table is then changed to associate key with the result
of proc.

The behavior of hash-table-update! is equivalent to the
following code, but may be implemented more efficiently in
cases where the implementation can avoid multiple lookups
of the same key:

(hash-table-set!

hash-table key

(proc (hash-table-ref

hash-table key default)))

(hash-table-fold proc hash-table init) procedure

Proc must be a procedure that takes three arguments.
For every association in hash-table, hash-table-fold calls
proc with the association key, the association value, and an
accumulated value as arguments. The accumulated value
is init for the first invocation of proc, and for subsequent
invocations of proc, it is the return value of the previous
invocation of proc. The order of the calls to proc is indeter-
minate. The return value of hash-table-fold is the value
of the last invocation of proc. If any side effect is performed
on the hash table while a hash-table-fold operation is
in progress, then the behavior of hash-table-fold is un-
specified.

(hash-table-copy hash-table) procedure
(hash-table-copy hash-table immutable) procedure

Returns a copy of hash-table. If the immutable argument is
provided and is true, the returned hash table is immutable;
otherwise it is mutable.

Rationale: Hash table references may be less expensive with

immutable hash tables. Also, a library may choose to export a

hash table which cannot be changed by clients.

(hash-table-clear! hash-table) procedure
(hash-table-clear! hash-table k) procedure

Removes all associations from hash-table and returns the
unspecified value.

If a second argument is given, the current capacity of the
hash table is reset to approximately k elements.

(hash-table-keys hash-table) procedure

Returns a list of all keys in hash-table. The order of the
list is unspecified. Equivalent to:

(hash-table-fold (lambda (k v a) (cons k a))

hash-table

’())

(hash-table-values hash-table) procedure

Returns a list of all values in hash-table. The order of the
list is unspecified. Equivalent to:

(hash-table-fold (lambda (k v a) (cons v a))

hash-table

’())
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18.3. Inspection

(hash-table-equivalence-function hash-table)
procedure

Returns the equivalence function used by hash-table
to compare keys. For hash tables created with
make-eq-hash-table and make-eqv-hash-table, returns
eq? and eqv? respectively.

(hash-table-hash-function hash-table) procedure

Returns the hash function used by hash-table. For
hash tables created by make-eq-hash-table or
make-eqv-hash-table, #f is returned.

Rationale: The make-eq-hash-table and

make-eqv-hash-table constructors are designed to hide

their hash function. This allows implementations to use the

machine address of an object as its hash value, rehashing parts

of the table as necessary whenever the garbage collector moves

objects to a different address.

(hash-table-mutable? hash-table) procedure

Returns #t if hash-table is mutable, otherwise returns #f.

18.4. Hash functions

The equal-hash, string-hash, and string-ci-hash pro-
cedures of this section are acceptable as hash functions only
if the keys on which they are called do not suffer side effects
while the hash table remains in use.

(equal-hash obj) procedure

Returns an integer hash value for obj , based on its struc-
ture and current contents. This hash function is suitable
for use with equal? as an equivalence function.

(string-hash string) procedure

Returns an integer hash value for string , based on its cur-
rent contents. This hash function is suitable for use with
string=? as an equivalence function.

(string-ci-hash string) procedure

Returns an integer hash value for string based on its cur-
rent contents, ignoring case. This hash function is suitable
for use with string-ci=? as an equivalence function.

(symbol-hash symbol) procedure

Returns an integer hash value for symbol .

19. Enumerations

This chapter describes the (r6rs enum) library for deal-
ing with enumerated values and sets of enumerated val-
ues. Enumerated values are represented by ordinary sym-
bols, while finite sets of enumerated values form a sepa-
rate type, known as the enumeration sets. The enumer-
ation sets are further partitioned into sets that share the
same universe and enumeration type. These universes and
enumeration types are created by the make-enumeration
procedure. Each call to that procedure creates a new enu-
meration type.

This library interprets each enumeration set with respect to
its specific universe of symbols and enumeration type. This
facilitates efficient implementation of enumeration sets and
enables the complement operation.

In the definition of the following procedures, let enum-set
range over the enumeration sets, which are defined as
the subsets of the universes that can be defined using
make-enumeration.

(make-enumeration list) procedure

List must be a list of symbols. The make-enumeration
procedure creates a new enumeration type whose universe
consists of those symbols (in canonical order of their first
appearance in the list) and returns that universe as an
enumeration set whose universe is itself and whose enu-
meration type is the newly created enumeration type.

(enum-set-universe enum-set) procedure

Returns the set of all symbols that comprise the universe
of its argument.

(enum-set-indexer enum-set) procedure

Returns a unary procedure that, given a symbol that is in
the universe of enum-set , returns its 0-origin index within
the canonical ordering of the symbols in the universe; given
a value not in the universe, the unary procedure returns #f.

(let* ((e (make-enumeration ’(red green blue)))

(i (enum-set-indexer e)))

(list (i ’red) (i ’green) (i ’blue) (i ’yellow)))

=⇒ (0 1 2 #f)

The enum-set-indexer procedure could be defined as fol-
lows (using the memq procedure from the (r6rs lists)
library):

(define (enum-set-indexer set)

(let* ((symbols (enum-set->list

(enum-set-universe set)))

(cardinality (length symbols)))

(lambda (x)

(let ((probe (memq x symbols)))



19. Enumerations 119

(if probe

(- cardinality (length probe))

#f)))))

(enum-set-constructor enum-set) procedure

Returns a unary procedure that, given a list of symbols
that belong to the universe of enum-set , returns a subset
of that universe that contains exactly the symbols in the
list. If any value in the list is not a symbol that belongs to
the universe, then the unary procedure raises an exception
with condition type &contract.

(enum-set->list enum-set) procedure

Returns a list of the symbols that belong to its argument,
in the canonical order of the universe of enum-set .

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list (c ’(blue red))))

=⇒ (red blue)

(enum-set-member? symbol enum-set) procedure
(enum-set-subset? enum-set1 enum-set2) procedure
(enum-set=? enum-set1 enum-set2) procedure

The enum-set-member? procedure returns #t if its first ar-
gument is an element of its second argument, #f otherwise.

The enum-set-subset? procedure returns #t if the uni-
verse of enum-set1 is a subset of the universe of enum-set2
(considered as sets of symbols) and every element of
enum-set1 is a member of its second. It returns #f oth-
erwise.

The enum-set=? procedure returns #t if enum-set1 is a
subset of enum-set2 and vice versa, as determined by the
enum-set-subset? procedure. This implies that the uni-
verses of the two sets are equal as sets of symbols, but
does not imply that they are equal as enumeration types.
Otherwise, #f is returned.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list

(enum-set-member? ’blue (c ’(red blue)))

(enum-set-member? ’green (c ’(red blue)))

(enum-set-subset? (c ’(red blue)) e)

(enum-set-subset? (c ’(red blue)) (c ’(blue red)))

(enum-set-subset? (c ’(red blue)) (c ’(red)))

(enum-set=? (c ’(red blue)) (c ’(blue red)))))

=⇒ (#t #f #t #t #f #t)

(enum-set-union enum-set1 enum-set2) procedure
(enum-set-intersection enum-set1 enum-set2)

procedure
(enum-set-difference enum-set1 enum-set2)

procedure

Enum-set1 and enum-set2 must be enumeration sets that
have the same enumeration type. If their enumeration
types differ, a &contract violation is raised.

The enum-set-union procedure returns the union of
enum-set1 and enum-set2. The enum-set-intersection
procedure returns the intersection of enum-set1 and
enum-set2. The enum-set-difference procedure returns
the difference of enum-set1 and enum-set2.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list (enum-set->list

(enum-set-union (c ’(blue)) (c ’(red))))

(enum-set->list

(enum-set-intersection (c ’(red green))

(c ’(red blue))))

(enum-set->list

(enum-set-difference (c ’(red green))

(c ’(red blue))))))

=⇒ ((red blue) (red) (green))

(enum-set-complement enum-set) procedure

Returns enum-set ’s complement with respect to its uni-
verse.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list

(enum-set-complement (c ’(red)))))

=⇒ (green blue)

(enum-set-projection enum-set1 enum-set2)
procedure

Projects enum-set1 into the universe of enum-set2, drop-
ping any elements of enum-set1 that do not belong to the
universe of enum-set2. (If enum-set1 is a subset of the uni-
verse of its second, then no elements are dropped, and the
injection is returned.)

(let ((e1 (make-enumeration

’(red green blue black)))

(e2 (make-enumeration

’(red black white))))

(enum-set->list

(enum-set-projection e1 e2))))

=⇒ (red black)
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(define-enumeration 〈type-name〉 syntax
(〈symbol〉 . . . )
〈constructor-syntax〉)

The define-enumeration form defines an enumeration
type and provides two macros for constructing its mem-
bers and sets of its members.

A define-enumeration form is a definition and can appear
anywhere any other 〈definition〉 can appear.

〈Type-name〉 is an identifier that is bound as a syntactic
keyword; 〈symbol〉 . . . are the symbols that comprise the
universe of the enumeration (in order).

(〈type-name〉 〈symbol〉) checks at macro-expansion time
whether 〈symbol〉 is in the universe associated with
〈type-name〉. If it is, then (〈type-name〉 〈symbol〉) is
equivalent to 〈symbol〉. It is a syntax violation if it is not.

〈Constructor-syntax〉 is an identifier that is bound to a
macro that, given any finite sequence of the symbols in the
universe, possibly with duplicates, expands into an expres-
sion that evaluates to the enumeration set of those symbols.

(〈constructor-syntax〉 〈symbol〉 . . . ) checks at macro-
expansion time whether every 〈symbol〉 . . . is in the uni-
verse associated with 〈type-name〉. It is a syntax violation
if one or more is not. Otherwise

(〈constructor-syntax〉 〈symbol〉 . . . )

is equivalent to

((enum-set-constructor (〈constructor-syntax〉))
(list ’〈symbol〉 . . . )).

Example:

(define-enumeration color

(black white purple maroon)

color-set)

(color black) =⇒ black

(color purpel) =⇒ &syntax exception
(enum-set->list (color-set))=⇒ ()

(enum-set->list

(color-set maroon white)) =⇒ (white maroon)

20. Miscellaneous libraries

20.1. when and unless

This section describes the (r6rs when-unless) library.

(when 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax
(unless 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

Syntax: 〈Test〉 must be an expression. Semantics: A when
expression is evaluated by evaluating the 〈test〉 expres-
sion. If 〈test〉 evaluates to a true value, the remaining

〈expression〉s are evaluated in order, and the result(s) of
the last 〈expression〉 is(are) returned as the result(s) of the
entire when expression. Otherwise, the when expression
evaluates to the unspecified value. An unless expression
is evaluated by evaluating the 〈test〉 expression. If 〈test〉
evaluates to false, the remaining 〈expression〉s are evalu-
ated in order, and the result(s) of the last 〈expression〉
is(are) returned as the result(s) of the entire unless ex-
pression. Otherwise, the unless expression evaluates to
the unspecified value.

(when (> 3 2) ’greater) =⇒ greater

(when (< 3 2) ’greater) =⇒ the unspecified value
(unless (> 3 2) ’less) =⇒ the unspecified value
(unless (< 3 2) ’less) =⇒ less

The when and unless expressions are derived forms. They
could be defined in terms of base library forms by the fol-
lowing macros:

(define-syntax when

(syntax-rules ()

((when test result1 result2 ...)

(if test

(begin result1 result2 ...)))))

(define-syntax unless

(syntax-rules ()

((unless test result1 result2 ...)

(if (not test)

(begin result1 result2 ...)))))

20.2. case-lambda

This section describes the (r6rs case-lambda) library.

(case-lambda 〈clause1〉 〈clause2〉 . . . ) syntax

Syntax: Each 〈clause〉 should be of the form

(〈formals〉 〈body〉)

〈Formals〉 must be as in a lambda form (section 9.5.2),
〈body〉 must be a body according to section 9.4.

Semantics: A case-lambda expression evaluates to a pro-
cedure. This procedure, when applied, tries to match its
arguments to the 〈clause〉s in order. The arguments match
a clause if one the following conditions is fulfilled:

• 〈Formals〉 has the form (〈variable〉 . . . ) and the num-
ber of arguments is the same as the number of formal
parameters in 〈formals〉.

• 〈Formals〉 has the form
(〈variable1〉 . . . 〈variablen〉 . 〈variablen+1)〉
and the number of arguments is at least n.
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• 〈Formals〉 has the form 〈variable〉.

For the first clause matched by the arguments, the variables
of the 〈formals〉 are bound to fresh locations containing the
argument values in the same arrangement as with lambda.

If the arguments match none of the clauses, an exception
with condition type &contract is raised.

(define foo

(case-lambda

(() ’zero)

((x) (list ’one x))

((x y) (list ’two x y))

((a b c d . e) (list ’four a b c d e))

(rest (list ’rest rest))))

(foo) =⇒ zero

(foo 1) =⇒ (one 1)

(foo 1 2) =⇒ (two 1 2)

(foo 1 2 3) =⇒ (rest (1 2 3))

(foo 1 2 3 4) =⇒ (four 1 2 3 4 ())

A sample definition of case-lambda in terms of simpler
forms is in appendix B.

20.3. Delayed evaluation

This section describes the (r6rs promises) library.

(delay 〈expression〉) syntax

The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay 〈expression〉) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate 〈expression〉, and deliver the
resulting value. The effect of 〈expression〉 returning multi-
ple values is unspecified.

See the description of force (section 20.3) for a more com-
plete description of delay.

(force promise) procedure

Promise must be a promise.

Forces the value of promise (see delay, section 20.3). If no
value has been computed for the promise, then a value is
computed and returned. The value of the promise is cached
(or “memoized”) so that if it is forced a second time, the
previously computed value is returned.

(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

=⇒ (3 3)

(define a-stream

(letrec ((next

(lambda (n)

(cons n (delay (next (+ n 1)))))))

(next 0)))

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream)))

=⇒ 2

Promises are mainly intended for programs written in func-
tional style. The following examples should not be consid-
ered to illustrate good programming style, but they illus-
trate the property that only one value is computed for a
promise, no matter how many times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise
(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Here is a possible implementation of delay and force.
Promises are implemented here as procedures of no argu-
ments, and force simply calls its argument:

(define force

(lambda (object)

(object)))

The expression

(delay 〈expression〉)

has the same meaning as the procedure call

(make-promise (lambda () 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(make-promise (lambda () expression))))),

where make-promise is defined as follows:

(define make-promise

(lambda (proc)

(let ((result-ready? #f)

(result #f))

(lambda ()

(if result-ready?

result
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(let ((x (proc)))

(if result-ready?

result

(begin (set! result-ready? #t)

(set! result x)

result))))))))

Rationale: A promise may refer to its own value, as in the

last example above. Forcing such a promise may cause the

promise to be forced a second time before the value of the first

force has been computed. This complicates the definition of

make-promise.

Various extensions to this semantics of delay and force
are supported in some implementations:

• Calling force on an object that is not a promise may
simply return the object.

• It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value. That is, expressions like the following
may evaluate to either #t or to #f, depending on the
implementation:

(eqv? (delay 1) 1) =⇒ unspecified
(pair? (delay (cons 1 2))) =⇒ unspecified

• Some implementations may implement “implicit forc-
ing,” where the value of a promise is forced by primi-
tive procedures like cdr and +:

(+ (delay (* 3 7)) 13) =⇒ 34

20.4. Command-line access

The procedure described in this section is exported by the
(r6rs scripts) library.

(command-line-arguments) procedure

When a script is being executed, this returns a list of
strings with at least one element. The first element is an
implementation-specific name for the running script. The
following elements are command-line arguments according
to the operating platform’s conventions.

21. Composite library

The (r6rs) library is a composite of most of the libraries
described in this report. The only exceptions are:

• (r6rs records explicit) (section 13.2)

• (r6rs mutable-pairs) (chapter 23)

• (r6rs eval) (chapter 22)

• (r6rs r5rs) (chapter 24)

The library exports all procedures and syntactic forms pro-
vided by the component libraries.

Note: Even though (r6rs records explicit) is not in-

cluded, (r6rs records implicit) is included, which subsumes

the functionality of (r6rs records explicit).

All of the bindings exported by 6̊rs are exported for both
run and expand; see section 6.2.

22. eval

The (r6rs eval) library allows a program to create
Scheme expressions as data at run time and evaluate them.

(eval expression environment-specifier) procedure

Evaluates expression in the specified environment and
returns its value. Expression must be a valid
Scheme expression represented as a datum value, and
environment-specifier must be a library specifier, which can
be created using the environment procedure described be-
low.

If the first argument to eval is not a syntactically correct
expression, then eval must raise an exception with con-
dition type &syntax. Specifically, if the first argument to
eval is a definition, it must raise an exception with condi-
tion type &eval-definition.

(environment import-spec . . .) procedure

Import-spec must be a datum representing an
〈import spec〉 (see section 6.1). The environment
procedure returns an environment corresponding to
import-spec

The bindings of the environment represented by the speci-
fier are immutable: If eval is applied to an expression that
attempts to assign to one of the variables of the environ-
ment, eval must raise an exception with a condition type
&contract.

(library (foo)

(export)

(import (r6rs))

(write (eval ’(let ((x 3)) x) (environment ’(r6rs)))

writes 3

(library foo

(export)

(import (r6rs)

(write

(eval

’(eval:car (eval:cons 2 4))

’(add-prefix (only (r6rs) car cdr cons null?)
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eval:))))

writes 2

23. Mutable pairs

The procedures provided by the (r6rs mutable-pairs)
library allow new values to be assigned to the car and cdr
fields of previously allocated pairs. In programs that use
this library, the criteria for determining the validity of list
arguments are more complex than in programs whose lists
are immutable. Section 23.2 spells out the definitions that
are needed to clarify the specifications of procedures that
accept lists. Section 23.3 uses those definitions to clarify
the specifications of procedures that are described by this
report.

23.1. Procedures

(set-car! pair obj) procedure

Stores obj in the car field of pair . Returns the unspecified
value.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ the unspecified value
(set-car! (g) 3) =⇒ unspecified

; should raise &contract exception

If an immutable pair is passed to set-car!, an exception
with condition type &contract should be raised.

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair . Returns the unspecified
value.

If an immutable pair is passed to set-cdr!, an exception
with condition type &contract should be raised.

(let ((x (list ’a ’b ’c ’a))

(y (list ’a ’b ’c ’a ’b ’c ’a)))

(set-cdr! (list-tail x 2) x)

(set-cdr! (list-tail y 5) y)

(list

(equal? x x)

(equal? x y)

(equal? (list x y ’a) (list y x ’b))))

=⇒ (#t #t #f)

23.2. Mutable list arguments

Through the set-car! and set-cdr! procedures, lists are
mutable in Scheme, so a pair that is the head of a list at
one moment may not always be the head of a list:

(define x (list ’a ’b ’c))

(define y x)

y =⇒ (a b c)

(list? y) =⇒ #t

(set-cdr! x 4) =⇒ the unspecified value
x =⇒ (a . 4)

(eqv? x y) =⇒ #t

y =⇒ (a . 4)

(list? y) =⇒ #f

(set-cdr! x x) =⇒ the unspecified value
(list? x) =⇒ #f

Any procedures defined in this report that are specified
to accept a list argument must check if that argument in-
deed appears to be a list. This checking is complicated by
the fact that some such procedures, e.g. map and filter,
call arbitrary procedures that are passed as arguments.
These procedures may mutate the list while it is being tra-
versed. Moreover, in the presence of concurrent evaluation,
whether a pair is the head of a list is not computable in
general.

Consequently, procedures like length are only required to
confirm that a list argument is a plausible list. Informally,
a plausible list is an object that appears to be a list dur-
ing a sequential traversal, where that traversal must also
attempt to detect a cycle. In particular, an immutable
plausible list is always a list. A more formal definition
follows.

Plausible lists are defined with respect to the time interval
between the time an argument is passed to the specified
procedure and the first return of a value to that procedure’s
continuation.

Note: In most implementations, the definitions that follow

are believed to be invariant under reasonable transformations

of global time [6].

A plausible list up to n between times t0 and tn is a Scheme
value x such that

1. x is a pair, and n is 0; or

2. x is the empty list, and n is 0; or

3. x is a pair p, n > 0, and there exists some time t1 in
(t0, tn] such that taking the cdr of p at time t1 yields
a plausible list up to n− 1 between times t1 and tn.

A plausible list up to and including n is a Scheme value x
such that

1. x is a pair, and n is 0; or
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2. x is a pair p, n > 0, and there exists some time t1 in
(t0, tn] such that taking the cdr of p at time t1 yields a
plausible list up to and including n− 1 between times
t1 and tn.

A plausible list of length n between times t0 and tn is a
Scheme value x such that

1. x is the empty list, and n is 0; or

2. x is a pair p, n > 0, and there exists some time t1 in
(t0, tn] such that taking the cdr of p at time t1 yields
a plausible list of length n − 1 between times t1 and
tn.

A plausible prefix of length n between times t0 and tn is a
sequence of Scheme values x0, . . . , xn and strictly increas-
ing times t1, . . . , tn such that x0 through xn−1 are pairs,
xn is either the empty list or a pair, and taking the cdr of
xi−1 at time ti yields xi.

A plausible alist up to n between times t0 and tn is a Scheme
value x such that

1. x is a pair, and n is 0; or

2. x is the empty list, and n is 0; or

3. x is a pair p, n > 0, and there exist times t1 and t′1 in
(t0, tn] such that the car of x at time t′1 is a pair and
the cdr of x at time t1 is a plausible alist up to n− 1
between times t1 and tn.

A plausible alist of length n is defined similarly, as is a
plausible alist prefix of length n.

A plausible list (alist) between times t0 and tn is a plausible
list (alist) of some length n between those times.

23.3. Procedures with list arguments

This section clarifies the domains of procedures in the base
library and the (r6rs lists) library.

23.3.1. Base-library procedures

These are clarifications to the domains of the procedures of
the base library described in sections 9.12, 9.15, and 9.18:

(list? obj) procedure

Returns #t if obj is a list that is not modified by set-cdr!
between entry and exit. Returns #f if obj is not a plausi-
ble list. Otherwise, this procedure returns an unspecified
boolean or does not return at all.

Note: The unspecified and non-terminating cases can occur

only in implementations that allow the argument to be modi-

fied by concurrent execution, which is beyond the scope of this

document. To reduce the number of unspecified cases that must

be mentioned, the rest of this chapter will mostly ignore the

possibility of unspecified behavior being caused by concurrent

execution.

(length list) procedure

List must be a plausible list.

Note: In other words, an exception must be raised if list is

not a plausible list. That list is a plausible list is not by itself

sufficient to avoid the exception, however. If list is a plausible

list, but is mutated in certain ways during the call to length,

then an exception may still be raised. This can occur only

in implementations that allow concurrent execution. The rest

of this chapter will mostly ignore the possibility of exceptions

being caused by concurrent modification of an argument.

(append list . . . obj) procedure

All lists must be plausible lists.

(reverse list) procedure

List must be a plausible list.

(list-tail l k) procedure

L must be a plausible list up to k .

(list-ref l k) procedure

L must be a plausible list up to and including k .

(map proc list1 list2 . . . ) procedure

Proc must be a procedure; if any of the listj are nonempty,
then proc must take as many arguments as there are listj .
A natural number n must exist such that all listj are plau-
sible lists of length n.
Note: In other words, an exception must be raised if no such
n exists. The existence of a natural number n such that all of
the lists are plausible lists of length n is not by itself sufficient
to avoid the exception, however. If proc mutates the lists in
certain ways during the call to map, then an exception may
still be raised, even in systems that do not allow concurrent
execution.

(let* ((ones (list 1))

(f (lambda (x)

(set-cdr! ones (list x))

(set! ones (cdr ones))

2)))

; ones is a plausible list

(map f ones)) =⇒ unspecified
; may not terminate
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(for-each proc list1 list2 . . . ) procedure

A natural number n must exist such that all listj are plau-
sible lists of length n.

(list->string list) procedure

List must be a plausible list where, for every natural num-
ber n and for every plausible prefix xi of that argument of
length n, there exists a time t with ti < t < tr, where tr is
the time of first return from list->string, for which the
car of xi is a character.

(apply proc arg1 . . . args) procedure

Proc must be a procedure and args must be a plausible
list.

23.3.2. List utilities

These are clarifications to the domains of the procedures
of the (r6rs lists) library described in chapter 12:

(find proc list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. Either there exists a natural number
n such that list is a plausible list of length n between entry
and some subsequent time before exit, or there exists a
natural number n, Scheme objects xj , and times tj such
that list, x1, . . . , xn and t1, . . . , tn is a plausible prefix up
to and including n, where t1 is after entry and tn is before
exit and there exists t′ before exit such that t′ > tn, the
car of xn at t′ is y, and a call to proc with argument y at
some time after t′ but before exit yields a true value.

(forall proc l1 l2 . . . ) procedure
(exists proc l1 l2 . . . ) procedure

Proc must be a procedure; if any lj is nonempty, then
proc must take as many arguments as there are ls. Ei-
ther there exists a natural number n such that every li is
a plausible list of length n between entry and some subse-
quent time before exit, or there exists a natural number n,
Scheme objects xi,j , and times ti,j such that for every li:
li, xi,1, . . . , xi,n and ti,1, . . . , ti,n is a plausible prefix up to
and including n, where ti,1 is after entry and ti,n is before
exit and there exist t′i before exit such that t′i > ti,n (where
ti,0 is defined to be t0), the car of xi,n at t′i is yi, and a call
to proc on the yi at some time after the maximum of the
t′i but before exit yields a false value (for forall) or a true
value (for exists).

(filter proc list) procedure
(partition proc list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. List must be a plausible list.

(fold-left kons nil list1 list2 . . . listn) procedure
(fold-right kons nil list1 list2 . . . listn) procedure

Kons must be a procedure; if the lists are non-empty, it
must take one more argument than there are lists. There
must exist a natural number n such that every list is a plau-
sible list of length n between entry and some subsequent
time before exit.

(remp proc list) procedure
(remove obj list) procedure
(remv obj list) procedure
(remq obj list) procedure

Proc must be a procedure; it must take a single argument
if list is non-empty. List must be a plausible list.

(memp proc l) procedure
(member obj l) procedure
(memv obj l) procedure
(memq obj l) procedure

Proc must be a procedure; if l is nonempty, then it must
take a single argument. L must be a plausible list or a
value according to the conditions specified below.

If l is not a plausible list, then it must be such that a
natural number n exists where l is the first Scheme value
of a plausible prefix of length n such that the car of the
last value xn of that prefix satisfies the given condition at
some time after tn and before the procedure returns.

(assp proc al) procedure
(assoc obj al) procedure
(assv obj al) procedure
(assq obj al) procedure

Al (for “association list”) must be a a plausible alist or
a value according to the conditions specified below. Proc
must be a procedure; if al is nonempty, then proc must
take a single argument.

If al is not a plausible alist, then a natural number n must
exist such that al is the first Scheme value of a plausible
prefix of length n such that every Scheme value x1 through
xn of that prefix is a pair, and xn has a pair as its car at
some time after tn, and at some time after that the car of
that pair is the first argument (or, for assp, a value for
which proc returns true), all before the procedure returns.

24. R5RS compatibility

The procedures described in this chapter are exported from
the (r6rs r5rs) library, and provide procedures described
in the previous revision of this report [28], but omitted from
this revision.
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(exact->inexact z) procedure
(inexact->exact z) procedure

These are the same as the ->inexact and ->exact proce-
dures; see section 9.10.2.

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure

These procedures implement number-theoretic (integer) di-
vision. n2 must be non-zero. All three procedures return
integers. If n1/n2 is an integer:

(quotient n1 n2) =⇒ n1/n2

(remainder n1 n2) =⇒ 0

(modulo n1 n2) =⇒ 0

If n1/n2 is not an integer:

(quotient n1 n2) =⇒ nq

(remainder n1 n2) =⇒ nr

(modulo n1 n2) =⇒ nm

where nq is n1/n2 rounded towards zero, 0 < |nr| < |n2|,
0 < |nm| < |n2|, nr and nm differ from n1 by a multiple of
n2, nr has the same sign as n1, and nm has the same sign
as n2.

Consequently, for integers n1 and n2 with n2 not equal to
0,

(= n1 (+ (* n2 (quotient n1 n2))

(remainder n1 n2)))

=⇒ #t

provided all numbers involved in that computation are ex-
act.

(modulo 13 4) =⇒ 1

(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3

(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3

(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1

(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0 ; inexact

Note: These procedures could be defined in terms of div and
mod (see section 9.10.2) as follows (without checking of the ar-
gument types):

(define (sign n)

(cond

((negative? n) -1)

((positive? n) 0)

(else 0)))

(define (quotient n1 n2)

(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)

(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)

(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

(null-environment n) procedure

N must be the exact integer 5. The null-environment
procedure returns an environment specifier suitable for use
with eval (see chapter 22) representing an environment
that is empty except for the (syntactic) bindings for all
syntactic keywords described in the previous revision of
this report [28].

(scheme-report-environment n) procedure

N must be the exact integer 5. The
scheme-report-environment procedure returns an
environment specifier for an environment that is empty
except for the bindings for the standard procedures
described in the previous revision of this report [28],
omitting load, transcript-on, transcript-off, and
char-ready?. The bindings have as values the procedures
of the same names described in this report.
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APPENDICES

Appendix A. Formal semantics

This chapter is a placeholder for a formal semantics written
using PLT Redex [34, 35]. It will appear in the final version
of this report.

Appendix B. Sample definitions for de-
rived forms

This appendix contains sample definitions for some of the
keywords described in this report in terms of simpler forms:

cond

The cond keyword (section 9.5.5) could be defined in terms
of if, let and begin using syntax-rules (see section 9.21)
as follows:

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

case

The case keyword (section 9.5.5) could be defined in
terms of let, cond, and memv (see chapter 12) using
syntax-rules (see section 9.21) as follows:

(define-syntax case

(syntax-rules (else)

((case expr0

((key ...) res1 res2 ...)

...

(else else-res1 else-res2 ...))

(let ((tmp expr0))

(cond

((memv tmp ’(key ...)) res1 res2 ...)

...

(else else-res1 else-res2 ...))))

((case expr0

((keya ...) res1a res2a ...)

((keyb ...) res1b res2b ...)

...)

(let ((tmp expr0))

(cond

((memv tmp ’(keya ...)) res1a res2a ...)

((memv tmp ’(keyb ...)) res1b res2b ...)

...)))))

letrec

The letrec keyword (section 9.5.6) could be defined ap-
proximately in terms of let and set! using syntax-rules
(see section 9.21), using a helper to generate the temporary
variables needed to hold the values before the assignments
are made, as follows:

(define-syntax letrec

(syntax-rules ()

((letrec () body1 body2 ...)

(let () body1 body2 ...))

((letrec ((var init) ...) body1 body2 ...)

(letrec-helper

(var ...)

()

((var init) ...)

body1 body2 ...))))

(define-syntax letrec-helper

(syntax-rules ()

((letrec-helper

()

(temp ...)

((var init) ...)

body1 body2 ...)

(let ((var <undefined>) ...)

(let ((temp init) ...)

(set! var temp)

...)

(let () body1 body2 ...)))

((letrec-helper

(x y ...)

(temp ...)

((var init) ...)

body1 body2 ...)

(letrec-helper

(y ...)

(newtemp temp ...)

((var init) ...)

body1 body2 ...))))
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The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &contract to be raised if an
attempt to read to or write from the location occurs before
the assignments generated by the letrec transformation
take place. (No such expression is defined in Scheme.)

let-values

The following definition of let-values (section 9.5.6) us-
ing syntax-rules (see section 9.21) employs a pair of
helpers to create temporary names for the formals.

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body1 body2 ...)

(let-values-helper1

()

(binding ...)

body1 body2 ...))))

(define-syntax let-values-helper1

;; map over the bindings

(syntax-rules ()

((let-values

((id temp) ...)

()

body1 body2 ...)

(let ((id temp) ...) body1 body2 ...))

((let-values

assocs

((formals1 expr1) (formals2 expr2) ...)

body1 body2 ...)

(let-values-helper2

formals1

()

expr1

assocs

((formals2 expr2) ...)

body1 body2 ...))))

(define-syntax let-values-helper2

;; create temporaries for the formals

(syntax-rules ()

((let-values-helper2

()

temp-formals

expr1

assocs

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda temp-formals

(let-values-helper1

assocs

bindings

body1 body2 ...))))

((let-values-helper2

(first . rest)

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(let-values-helper2

rest

(temp ... newtemp)

expr1

(assoc ... (first newtemp))

bindings

body1 body2 ...))

((let-values-helper2

rest-formal

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda (temp ... . newtemp)

(let-values-helper1

(assoc ... (rest-formal newtemp))

bindings

body1 body2 ...))))))

case-lambda

The case-lambda keyword (see section 20.2) could be de-
fined in terms of base library by the following macros:

(define-syntax case-lambda

(syntax-rules ()

((case-lambda

(formals-0 body0-0 body1-0 ...)

(formals-1 body0-1 body1-1 ...)

...)

(lambda args

(let ((l (length args)))

(case-lambda-helper

l args

(formals-0 body0-0 body1-0 ...)

(formals-1 body0-1 body1-1 ...) ...))))))

(define-syntax case-lambda-helper

(syntax-rules ()

((case-lambda-helper

l args

((formal ...) body ...)

clause ...)

(if (= l (length ’(formal ...)))

(apply (lambda (formal ...) body ...)

args)

(case-lambda-helper l args clause ...)))

((case-lambda-helper

l args

((formal . formals-rest) body ...)
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clause ...)

(case-lambda-helper-dotted

l args

(body ...)

(formal . formals-rest)

formals-rest 1

clause ...))

((case-lambda-helper

l args

(formal body ...))

(let ((formal args))

body ...))))

(define-syntax case-lambda-helper-dotted

(syntax-rules ()

((case-lambda-helper-dotted

l args

(body ...)

formals

(formal . formals-rest) k

clause ...)

(case-lambda-helper-dotted

l args

(body ...)

formals

formals-rest (+ 1 k)

clause ...))

((case-lambda-helper-dotted

l args

(body ...)

formals

rest-formal k

clause ...)

(if (>= l k)

(apply (lambda formals body ...) args)

(case-lambda-helper

l args clause ...)))))

Appendix C. Additional material

The Schemers web site at

http://www.schemers.org/

as well as the Readscheme site at

http://library.readscheme.org/

contain extensive Scheme bibliographies, as well as papers,
programs, implementations, and other material related to
Scheme.

Appendix D. Example

This section describes an example consisting of
the (runge-kutta) library, which provides an
integrate-system procedure that integrates the system

y′k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

As the (runge-kutta) library makes use of the (r6rs
base) and the (r6rs promises) libraries, the library
skeleton looks as follows:

#!r6rs

(library (runge-kutta)

(export integrate-system)

(import (r6rs base)

(r6rs promises))

〈library body〉)

The procedure definitions go in the place of 〈library body〉
described below:

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . . . , yn) and produces a system derivative (the val-
ues y′1, . . . , y

′
n). The parameter initial-state provides

an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infinite
stream of system states.

(define integrate-system

(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(delay (map-streams next

states)))))

states))))

The runge-Kutta-4 procedure takes a function, f, that
produces a system derivative from a system state. The
runge-Kutta-4 procedure produces a function that takes
a system state and produces a new system state.

(define runge-kutta-4

(lambda (f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3))))))))

(define elementwise

(lambda (f)

(lambda vectors
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(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors)))))))

(define generate-vector

(lambda (size proc)

(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector

(lambda (s)

(elementwise (lambda (x) (* x s)))))

The map-streams procedure is analogous to map: it applies
its first argument (a procedure) to all the elements of its
second argument (a stream).

(define map-streams

(lambda (f s)

(cons (f (head s))

(delay (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds
the first element of the stream and whose cdr holds a
promise to deliver the rest of the stream.

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

The following script illustrates the use of
integrate-system in integrating the system

C
dvC

dt
= −iL − vC

R

L
diL
dt

= vC

which models a damped oscillator.

#! /usr/bin/env scheme-script

#!r6rs

(import (r6rs base)

(r6rs i/o simple)

(runge-kutta))

(define damped-oscillator

(lambda (R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

(define the-states

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01)))

(letrec ((loop (lambda (s)

(newline)

(write (head s))

(loop (tail s)))))

(loop the-states))

0

This prints output like the following:

#(1 0)

#(0.99895054 9.994835e-6)

#(0.99780226 1.9978681e-5)

#(0.9965554 2.9950552e-5)

#(0.9952102 3.990946e-5)

#(0.99376684 4.985443e-5)

#(0.99222565 5.9784474e-5)

#(0.9905868 6.969862e-5)

#(0.9888506 7.9595884e-5)

#(0.9870173 8.94753e-5)
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

The principal entry for each term, procedure, or keyword is
listed first, separated from the other entries by a semicolon.

! 20
’ 16
* 40
+ 40; 12
, 16
,@ 16
- 40; 12
-> 20
->exact 39
->inexact 39
... 12; 54, 109
/ 40
; 12
< 39
<= 39
= 39
=> 31
> 39
>= 39
? 20
‘ 16

abs 40
acos 42
and 32
angle 42
antimark 108
append 45; 124
apply 49; 57, 125
asin 42
assignment 7
assoc 65; 125
assp 65; 125
assq 65; 125
assv 65; 125
atan 42

#b 12; 14
backquote 52
begin 34; 35
binding 6; 16
binding construct 16
body 29
boolean 5
boolean? 43; 29
bound 16
bound-identifier=? 111
buffer-mode 86
buffer-mode? 86

byte 60
bytes objects 60
bytes reader 82
bytes writer 84
bytes->sint-list 63
bytes->u8-list 63
bytes->uint-list 63
bytes-copy 63
bytes-copy! 63
bytes-ieee-double-native-ref 62
bytes-ieee-double-native-set! 62
bytes-ieee-double-ref 62
bytes-ieee-double-set! 63
bytes-ieee-single-native-ref 62
bytes-ieee-single-native-set! 62
bytes-ieee-single-ref 62
bytes-ieee-single-set! 62
bytes-length 60
bytes-s16-native-ref 61
bytes-s16-native-set! 61
bytes-s16-ref 61
bytes-s16-set! 61
bytes-s32-native-ref 62
bytes-s32-native-set! 62
bytes-s32-ref 61
bytes-s32-set! 62
bytes-s64-native-ref 62
bytes-s64-native-set! 62
bytes-s64-ref 62
bytes-s64-set! 62
bytes-s8-ref 60
bytes-s8-set! 60
bytes-sint-ref 61
bytes-sint-set! 61
bytes-u16-native-ref 61
bytes-u16-native-set! 61
bytes-u16-ref 61
bytes-u16-set! 61
bytes-u32-native-ref 62
bytes-u32-native-set! 62
bytes-u32-ref 61
bytes-u32-set! 62
bytes-u64-native-ref 62
bytes-u64-native-set! 62
bytes-u64-ref 62
bytes-u64-set! 62
bytes-u8-ref 60
bytes-u8-set! 60
bytes-uint-ref 61
bytes-uint-set! 61
bytes=? 62
bytes? 60
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caar 44
cadr 44
call 24
call by need 121
call-with-bytes-output-port 91
call-with-current-continuation 49; 50, 57
call-with-input-file 93
call-with-output-file 93
call-with-port 88
call-with-string-output-port 91
call-with-values 50; 57
call/cc 49; 50
car 44
case 31; 127
case-lambda 120; 128
case-lambda-helper 128
case-lambda-helper-dotted 129
catch 50
cdddar 44
cddddr 44
cdr 44
ceiling 41
char->integer 46
char-alphabetic? 58
char-ci<=? 58
char-ci<? 58
char-ci=? 58
char-ci>=? 58
char-ci>? 58
char-downcase 58
char-foldcase 58
char-general-category 59
char-lower-case? 58
char-numeric? 58
char-title-case? 58
char-titlecase 58
char-upcase 58
char-upper-case? 58
char-whitespace? 58
char<=? 46
char<? 46
char=? 46
char>=? 46
char>? 46
char? 46; 29
character 6
characters 46
clear-bytes-output-port! 91
clear-string-output-port! 91
clear-writer-bytes! 84
close-input-port 93
close-output-port 93
close-port 88
code point 46
codec 86

command-line arguments 26
command-line-arguments 122
comment 12; 11
complex? 38; 9
cond 31; 55, 127
condition 76
condition-has-type? 75
condition-irritants 77
condition-message 76
condition-ref 75
condition-type? 75
condition-who 78
condition? 75
cons 44
constant 18
constructor descriptor 67
continuation 50
&contract 77
contract-violation 48
contract-violation? 77
core form 27
cos 42
current exception handler 73
current-input-port 93
current-output-port 93

#d 14
datum 10
datum value 10; 8
datum->syntax 113
declaration 22
declarations 56
declare 56
&defect 77
defect? 77
define 29
define-enumeration 120
define-record-type 69
define-syntax 29
definition 22; 29, 6
delay 121
denominator 41
derived form 8
display 94
div 40
div+mod 40
div0 41
div0+mod0 41
do 51; 52
dotted pair 44
dynamic-wind 50; 49

#e 12; 14
else 31
empty list 44; 15, 29, 43
end of file value 29
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endianness 60
enum-set->list 119
enum-set-complement 119
enum-set-constructor 119
enum-set-difference 119
enum-set-indexer 118
enum-set-intersection 119
enum-set-member? 119
enum-set-projection 119
enum-set-subset? 119
enum-set-union 119
enum-set-universe 118
enum-set=? 119
enumeration 118
enumeration sets 118
enumeration type 118
environment 122
eof-object 37
eof-object? 37; 29
eol-style 86
eq? 36; 31
equal-hash 118
equal? 37
equivalence function 116
equivalence predicate 35
eqv? 35; 17, 31
error 48; 77
error-handling-mode 87
error? 77
escape procedure 49
escape sequence 13
eval 122
even? 39
exact 35
exact* 103
exact+ 103
exact- 103
exact->inexact 126
exact-abs 103
exact-and 104
exact-arithmetic-shift 104
exact-arithmetic-shift-left 105
exact-arithmetic-shift-right 105
exact-bit-count 104
exact-bit-field 104
exact-bit-set? 104
exact-ceiling 103
exact-complex? 102
exact-copy-bit 104
exact-copy-bit-field 104
exact-denominator 103
exact-div 103
exact-div+mod 103
exact-div0 103
exact-div0+mod0 103

exact-even? 103
exact-expt 103
exact-first-bit-set 104
exact-floor 103
exact-gcd 103
exact-if 104
exact-imag-part 103
exact-integer? 102
exact-ior 104
exact-lcm 103
exact-length 104
exact-make-rectangular 103
exact-max 103
exact-min 103
exact-mod 103
exact-mod0 103
exact-negative? 103
exact-not 104
exact-number? 102
exact-numerator 103
exact-odd? 103
exact-positive? 103
exact-rational? 102
exact-real-part 103
exact-reverse-bit-field 105
exact-rotate-bit-field 105
exact-round 103
exact-sqrt 104
exact-truncate 103
exact-xor 104
exact-zero? 103
exact/ 103
exact<=? 102
exact<? 102
exact=? 102
exact>=? 102
exact>? 102
exact? 39
exactness 9
exception 74
exceptional situation 17; 74
exceptions 73
exists 63; 125
exit value 26
exp 41
export 21
expression 6; 22
expt 42
external representation 10
extract-condition 75

#f 13; 43
false 29; 43
file options 79
file-options 79



136 Revised5.91 Scheme

filter 64; 125
find 63; 125
finite? 39
fixnum 9
fixnum* 96
fixnum*/carry 97
fixnum+ 96
fixnum+/carry 96
fixnum- 96
fixnum-/carry 96
fixnum->flonum 102
fixnum-and 97
fixnum-arithmetic-shift 98
fixnum-arithmetic-shift-left 98
fixnum-arithmetic-shift-right 98
fixnum-bit-count 97
fixnum-bit-field 97
fixnum-bit-set? 97
fixnum-copy-bit 97
fixnum-copy-bit-field 97
fixnum-div 96
fixnum-div+mod 96
fixnum-div0 96
fixnum-div0+mod0 96
fixnum-even? 96
fixnum-first-bit-set 97
fixnum-if 97
fixnum-ior 97
fixnum-length 97
fixnum-logical-shift-left 98
fixnum-logical-shift-right 98
fixnum-max 96
fixnum-min 96
fixnum-mod 96
fixnum-mod0 96
fixnum-negative? 96
fixnum-not 97
fixnum-odd? 96
fixnum-positive? 96
fixnum-reverse-bit-field 98
fixnum-rotate-bit-field 98
fixnum-width 96
fixnum-xor 97
fixnum-zero? 96
fixnum<=? 96
fixnum<? 96
fixnum=? 96
fixnum>=? 96
fixnum>? 96
fixnum? 96
fl* 100
fl+ 100
fl- 101
fl/ 101
fl<=? 100

fl<? 100
fl=? 100
fl>=? 100
fl>? 100
flabs 101
flasin 101
flatan 101
flceiling 101
flcos 101
fldenominator 101
fldiv 101
fldiv+mod 101
fldiv0 101
fldiv0+mod0 101
fleven? 100
flexp 101
flexpt 102
flfinite? 100
flfloor 101
flinfinite? 100
flinteger? 100
fllog 101
flmax 100
flmin 100
flmod 101
flmod0 101
flnan? 100
flnegative? 100
flnumerator 101
flodd? 100
flonum 9
flonum? 100
floor 41
flpositive? 100
flround 101
flsin 101
flsqrt 102
fltan 101
fltruncate 101
flush-output-port 90
flzero? 100
fold-left 64; 125
fold-right 64; 125
for-each 45; 125
forall 63; 125
force 121
form 10
free-identifier=? 112
fx* 99
fx+ 99
fx- 99
fx<=? 98
fx<? 98
fx=? 98
fx>=? 98
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fx>? 98
fxand 99
fxarithmetic-shift 99
fxarithmetic-shift-left 100
fxarithmetic-shift-right 100
fxbit-count 99
fxbit-field 99
fxbit-set? 99
fxcopy-bit 99
fxcopy-bit-field 99
fxdiv 99
fxdiv+mod 99
fxdiv0 99
fxdiv0+mod0 99
fxeven? 98
fxfirst-bit-set 99
fxif 99
fxior 99
fxlength 99
fxmax 99
fxmin 99
fxmod 99
fxmod0 99
fxnegative? 98
fxnot 99
fxodd? 98
fxpositive? 98
fxreverse-bit-field 100
fxrotate-bit-field 100
fxxor 99
fxzero? 98

gcd 41
generate-temporaries 114
get-bytes-all 89
get-bytes-n 89
get-bytes-n! 89
get-bytes-some 89
get-char 89
get-datum 90
get-line 90
get-output-bytes 91
get-output-string 91
get-string-all 90
get-string-n 90
get-string-n! 90
get-u8 89
greatest-fixnum 96
guard 73

hash function 116
hash table 116
hash-table-clear! 117
hash-table-contains? 117
hash-table-copy 117
hash-table-delete! 117

hash-table-equivalence-function 118
hash-table-fold 117
hash-table-hash-function 118
hash-table-keys 117
hash-table-mutable? 118
hash-table-ref 117
hash-table-set! 117
hash-table-size 117
hash-table-update! 117
hash-table-values 117
hash-table? 117
hygienic 25

#i 12; 14
&i/o 78
&i/o-decoding 86
i/o-decoding-error? 86
&i/o-encoding 87
i/o-encoding-error-char 87
i/o-encoding-error-transcoder 87
i/o-encoding-error? 87
i/o-error-filename 78
i/o-error-port 86
i/o-error-reader/writer 80
i/o-error? 78
i/o-exists-not-error? 79
&i/o-file-already-exists 79
i/o-file-already-exists-error? 79
&i/o-file-exists-not 79
&i/o-file-is-read-only 79
i/o-file-is-read-only-error? 79
&i/o-file-protection 79
i/o-file-protection-error? 79
&i/o-filename 78
i/o-filename-error? 78
&i/o-invalid-position 78
i/o-invalid-position-error? 78
&i/o-port 86
i/o-port-error? 86
&i/o-read 78
i/o-read-error? 78
i/o-reader-writer-error? 80
&i/o-reader/writer 80
&i/o-write 78
i/o-write-error? 78
identifier 6; 12, 108, 11, 16, 45
identifier macro 111
identifier-syntax 114
identifier? 111
if 31
imag-part 42
immutable 18
implementation restriction 17; 9
&implementation-restriction 77
implementation-restriction? 77
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implicit identifier 113
import 21
import phase 23
improper list 44
inexact 35
inexact* 106
inexact+ 106
inexact- 106
inexact->exact 126
inexact-abs 106
inexact-angle 107
inexact-asin 106
inexact-atan 106
inexact-ceiling 106
inexact-complex? 105
inexact-cos 106
inexact-denominator 106
inexact-div 106
inexact-div+mod 106
inexact-div0 106
inexact-div0+mod0 106
inexact-even? 105
inexact-exp 106
inexact-expt 107
inexact-finite? 105
inexact-floor 106
inexact-gcd 106
inexact-imag-part 107
inexact-infinite? 105
inexact-integer? 105
inexact-lcm 106
inexact-log 106
inexact-magnitude 107
inexact-make-polar 107
inexact-make-rectangular 107
inexact-max 105
inexact-min 105
inexact-mod 106
inexact-mod0 106
inexact-nan? 105
inexact-negative? 105
inexact-number? 105
inexact-numerator 106
inexact-odd? 105
inexact-positive? 105
inexact-rational? 105
inexact-real-part 107
inexact-real? 105
inexact-round 106
inexact-sin 106
inexact-sqrt 106
inexact-tan 106
inexact-truncate 106
inexact-zero? 105
inexact/ 106

inexact<=? 105
inexact<? 105
inexact=? 105
inexact>=? 105
inexact>? 105
inexact? 39
infinite? 39
input port 85
input-port? 88
integer->char 46
integer-valued? 38
integer? 38; 9
internal definition 30
invoking 24
&irritants 77
irritants-condition? 77

keyword 25

lambda 30; 29
latin-1-codec 86
lazy evaluation 121
lcm 41
least-fixnum 96
length 45; 124
let 32; 29, 30, 51, 55
let* 33; 29, 30
let*-values 34; 29, 30
let-syntax 53
let-values 34; 29, 30
letrec 33; 29, 30, 127
letrec* 33; 29, 30, 34
letrec-syntax 53
lexeme 11
&lexical 77
lexical-violation? 77
library 20; 21, 8, 16
library specifier 122
list 6; 44
list->string 47; 125
list->vector 48
list-ref 45; 124
list-tail 45; 124
list? 44; 124
literal 24
location 17
log 41
lookahead-char 89
lookahead-u8 89

macro 25; 8
macro keyword 25
macro transformer 25
magnitude 42
make-bytes 60
make-compound-condition 75
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make-condition 75
make-condition-type 75
make-enumeration 118
make-eq-hash-table 116
make-eqv-hash-table 116
make-hash-table 116
make-i/o-buffer 80
make-polar 42
make-record-constructor-descriptor 67
make-record-type-descriptor 66
make-rectangular 42
make-simple-reader 80
make-simple-writer 82
make-string 47
make-transcoder 87
make-variable-transformer 109
make-vector 48
map 45; 124
mark 108
max 40
member 65; 125
memp 65; 125
memq 65; 125
memv 65; 125
&message 76
message-condition? 76
meta level 23
min 40
mod 40
mod0 41
modulo 126
mutable 18

nan? 39
native-endianness 60
native-eol-style 86
negative? 39
newline 94
nil 43
&no-infinities 102
no-infinities? 102
&no-nans 102
no-nans? 102
&non-continuable 77
non-continuable? 77
not 43
null-environment 126
null? 44; 29
number 5; 9, 94
number->string 43
number? 38; 9, 29
numerator 41
numerical types 9

#o 12; 14
object 5

octet 60
odd? 39
open-bytes-input-port 89
open-bytes-output-port 91
open-bytes-reader 82
open-bytes-writer 84
open-file-input-port 88
open-file-input/output-port 92
open-file-output-port 91
open-file-reader 82
open-file-reader+writer 84
open-file-writer 84
open-input-file 93
open-output-file 93
open-reader-input-port 92
open-string-input-port 89
open-string-output-port 91
open-writer-output-port 92
operand 6
operator 6
or 32
output ports 85
output-port-buffer-mode 91
output-port? 90

pair 6; 44
pair? 44; 29
partition 64; 125
pattern variable 54; 109
peek-char 93
phase 23
plausible list 123
port 85
port-eof? 88
port-has-port-position? 88
port-has-set-port-position!? 88
port-position 88
port-transcoder 88
port? 88
position 87
positive? 39
predicate 35
prefix notation 6
procedure 6; 7
procedure call 24; 7
procedure? 37; 29
promise 121
proper tail recursion 18
protocol 67
put-bytes 92
put-char 92
put-datum 92
put-string 92
put-string-n 92
put-u8 92
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quasiquote 52; 53
quasisyntax 115
quote 30
quotient 126

(r6rs) 122
(r6rs arithmetic exact) 102
(r6rs arithmetic fixnum) 96
(r6rs arithmetic flonum) 100
(r6rs arithmetic fx) 98
(r6rs arithmetic inexact) 105
(r6rs bytes) 60
(r6rs case-lambda) 120
(r6rs conditions) 74
(r6rs enum) 118
(r6rs exceptions) 73
(r6rs hash-tables) 116
(r6rs i/o ports) 85
(r6rs i/o primitive) 79
(r6rs i/o simple) 93
(r6rs lists) 63
(r6rs mutable-pairs) 123
(r6rs promises) 121
(r6rs r5rs) 125
(r6rs records explicit) 69
(r6rs records implicit) 71
(r6rs records inspection) 72
(r6rs records procedural) 66
(r6rs scripts) 122
(r6rs syntax-case) 107
(r6rs unicode) 58
(r6rs when-unless) 120
raise 73
raise-continuable 73
rational-valued? 38
rational? 38; 9
rationalize 41
read 94
read-char 93
reader-available 81
reader-chunk-size 81
reader-close 82
reader-descriptor 81
reader-end-position 82
reader-get-position 81
reader-has-end-position? 82
reader-has-get-position? 81
reader-has-set-position!? 82
reader-id 81
reader-read! 81
reader-set-position! 82
reader? 80
real->double 39
real->flonum 39
real->single 39

real-part 42
real-valued? 38
real? 38; 9
record 65
record-accessor 68
record-constructor 68
record-constructor descriptor 67
record-constructor-descriptor 70
record-field-mutable? 72
record-mutator 68
record-predicate 68
record-rtd 72
record-type descriptor 66
record-type-descriptor 70
record-type-descriptor? 67
record-type-field-names 72
record-type-generative? 72
record-type-name 72
record-type-opaque? 72
record-type-parent 72
record-type-sealed? 72
record-type-uid 72
record? 72
referentially transparent 25
region 16; 31, 32, 33, 34, 52
remainder 126
remove 64; 125
remp 64; 125
remq 65; 125
remv 65; 125
reverse 45; 124
round 41
rtd 66

safe libraries 17
scalar value 46
scheme-report-environment 126
script 26; 8, 16
&serious 77
serious-condition? 77
set! 31
set-car! 123
set-cdr! 123
set-port-position! 88
simplest rational 41
sin 41
sint-list->bytes 63
splicing 34
sqrt 42
standard-error-port 91
standard-error-writer 84
standard-input-port 89
standard-input-reader 82
standard-output-port 91
standard-output-writer 84
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string 6; 47
string->list 47
string->number 43
string->symbol 46
string-append 47
string-ci-hash 118
string-ci<=? 59
string-ci<? 59
string-ci=? 59
string-ci>=? 59
string-ci>? 59
string-copy 47
string-downcase 59
string-fill! 47
string-foldcase 59
string-hash 118
string-length 47
string-normalize-nfc 59
string-normalize-nfd 59
string-normalize-nfkc 59
string-normalize-nfkd 59
string-ref 47
string-set! 47
string-titlecase 59
string-upcase 59
string<=? 47
string<? 47
string=? 47
string>=? 47
string>? 47
string? 47; 29
substitution 108
substring 47
surrogate 46
symbol 6; 13
symbol->string 46; 18
symbol-hash 118
symbol? 46; 29
syntactic abstraction 25
syntactic datum 10; 15, 8
syntactic keyword 16; 7, 13, 25
syntax 110; 77
syntax object 108; 109
syntax violation 20
syntax->datum 112
syntax-case 109
syntax-rules 54
syntax-violation 116
syntax-violation? 77

#t 13; 43
tail call 56
tan 42
transcoder 86
transcoder-codec 87

transcoder-eol-style 87
transcoder-error-handling-mode 87
transformation procedure 109
transformer 25
true 29; 31, 43
truncate 41
type 29

u8-list->bytes 63
uint-list->bytes 63
unbound 16; 24
&undefined 77
undefined-violation? 77
unicode 46
universe 118
unless 120
unquote 53
unquote-splicing 53
unspecified 37
unspecified behavior 20
unspecified value 29; 37
unspecified? 37; 29
utf-16be-codec 86
utf-16le-codec 86
utf-32be-codec 86
utf-32le-codec 86
utf-8-codec 86

valid indexes 47; 48
values 50
variable 6; 16, 13, 24
variable transformer 109
vector 6; 48
vector->list 48
vector-fill! 48
vector-length 48
vector-ref 48
vector-set! 48
vector? 48; 29
&violation 77
violation? 77
visiting 24

&warning 76
warning? 76
when 120
whitespace 12
&who 78
who-condition? 78
with-exception-handler 73
with-input-from-file 93
with-output-to-file 93
with-syntax 114
wrap 108
wrapped syntax object 108
write 94
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write-char 94
writer-bytes 84
writer-chunk-size 83
writer-close 84
writer-descriptor 83
writer-end-position 84
writer-get-position 83
writer-has-end-position? 84
writer-has-get-position? 83
writer-has-set-position!? 84
writer-id 83
writer-set-position! 84
writer-write! 83
writer? 82

#x 12; 14

zero? 39


