
Revised5.94 Report on the Algorithmic Language

Scheme

— Standard Libraries —

MICHAEL SPERBER

WILLIAM CLINGER, R. KENT DYBVIG, MATTHEW FLATT, ANTON VAN STRAATEN

(Editors)
RICHARD KELSEY, WILLIAM CLINGER, JONATHAN REES

(Editors, Revised5 Report on the Algorithmic Language Scheme)
11 June 2007

This report frequently refers back to the Revised6 Report on the Algorithmic Language Scheme [10]; references to the
report are identified by designations such as “report section” or “report chapter”.

Parts of the library report are derived from earlier revisions of the report [7]. We gratefully acknowledge their authors
for their contributions. More detailed information on authorship can be found at the beginning of the Revised6 Report
on the Algorithmic Language Scheme.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

*** DRAFT***
This is a preliminary draft. It is intended to reflect the decisions taken by the editors’ committee, but likely contains
many mistakes, ambiguities and inconsistencies.

2 Revised5.94 Scheme Libraries

CONTENTS

1 Unicode . 3
1.1 Characters 3
1.2 Strings . 4

2 Bytevectors . 5
2.1 Endianness 5
2.2 General operations 5
2.3 Operations on bytes and octets 6
2.4 Operations on integers of arbitrary size . . . 6
2.5 Operations on 16-bit integers 7
2.6 Operations on 32-bit integers 8
2.7 Operations on 64-bit integers 8
2.8 Operations on IEEE-754 numbers 9
2.9 Operations on strings 9

3 List utilities . 10
4 Sorting . 13
5 Control structures 13
6 Records . 15

6.1 Mutability and equivalence 15
6.2 Procedural layer 16
6.3 Syntactic layer 19
6.4 Inspection 22

7 Exceptions and conditions 22
7.1 Exceptions 23
7.2 Conditions 24
7.3 Standard condition types 26

8 I/O . 28
8.1 Condition types 28
8.2 Port I/O . 29
8.3 Simple I/O 40

9 File system . 41
10 Command-line access and exit values 41
11 Arithmetic . 42

11.1 Fixnums . 42
11.2 Flonums . 44
11.3 Exact bitwise arithmetic 47

12 syntax-case . 48
12.1 Hygiene . 49
12.2 Syntax objects 49
12.3 Transformers 50
12.4 Parsing input and producing output 50
12.5 Identifier predicates 52
12.6 Syntax-object and datum conversions . . . 54
12.7 Generating lists of temporaries 55
12.8 Derived forms and procedures 55
12.9 Syntax violations 56

13 Hashtables . 57
13.1 Constructors 57
13.2 Procedures 57
13.3 Inspection 58
13.4 Hash functions 58

14 Enumerations . 59

15 Composite library 61
16 eval . 61
17 Mutable pairs . 61
18 Mutable strings 62
19 R5RS compatibility 62
References . 63
Alphabetic index of definitions of concepts, key-

words, and procedures 65

1. Unicode 3

1. Unicode

The procedures exported by the (rnrs unicode (6)) li-
brary provide access to some aspects of the Unicode seman-
tics for characters and strings: category information, case-
independent comparisons, case mappings, and normaliza-
tion [11].

Some of the procedures that operate on characters or
strings ignore the difference between upper case and lower
case. The procedures that ignore case have “-ci” (for “case
insensitive”) embedded in their names.

1.1. Characters

(char-upcase char) procedure
(char-downcase char) procedure
(char-titlecase char) procedure
(char-foldcase char) procedure

These procedures take a character argument and return a
character result. If the argument is an upper case or title
case character, and if there is a single character that is its
lower case form, then char-downcase returns that charac-
ter. If the argument is a lower case or title case character,
and there is a single character that is its upper case form,
then char-upcase returns that character. If the argument
is a lower case or upper case character, and there is a single
character that is its title case form, then char-titlecase
returns that character. If the argument is not a title case
character and there is no single character that is its title
case form, then char-titlecase returns the upper case
form of the argument. Finally, if the character has a case-
folded character, then char-foldcase returns that charac-
ter. Otherwise the character returned is the same as the ar-
gument. For Turkic characters İ (#\x130) and ı (#\x131),
char-foldcase behaves as the identity function; otherwise
char-foldcase is the same as char-downcase composed
with char-upcase.

(char-upcase #\i) =⇒ #\I

(char-downcase #\i) =⇒ #\i

(char-titlecase #\i) =⇒ #\I

(char-foldcase #\i) =⇒ #\i

(char-upcase #\ß) =⇒ #\ß

(char-downcase #\ß) =⇒ #\ß

(char-titlecase #\ß) =⇒ #\ß

(char-foldcase #\ß) =⇒ #\ß

(char-upcase #\Σ) =⇒ #\Σ
(char-downcase #\Σ) =⇒ #\σ
(char-titlecase #\Σ) =⇒ #\Σ
(char-foldcase #\Σ) =⇒ #\σ

(char-upcase #\ς) =⇒ #\Σ
(char-downcase #\ς) =⇒ #\ς

(char-titlecase #\ς) =⇒ #\Σ
(char-foldcase #\ς) =⇒ #\σ

Note: Note that char-titlecase does not always return a

title case character.

Note: These procedures are consistent with Unicode’s locale-
independent mappings from scalar values to scalar values
for upcase, downcase, titlecase, and case-folding operations.
These mappings can be extracted from UnicodeData.txt and
CaseFolding.txt from the Unicode Consortium, ignoring Tur-
kic mappings in the latter.

Note that these character-based procedures are an incomplete

approximation to case conversion, even ignoring the user’s

locale. In general, case mappings require the context of a

string, both in arguments and in result. The string-upcase,

string-downcase, string-titlecase, and string-foldcase

procedures (section 1.2) perform more general case conversion.

(char-ci=? char1 char2 char3 . . .) procedure
(char-ci<? char1 char2 char3 . . .) procedure
(char-ci>? char1 char2 char3 . . .) procedure
(char-ci<=? char1 char2 char3 . . .) procedure
(char-ci>=? char1 char2 char3 . . .) procedure

These procedures are similar to char=?, etc., but operate
on the case-folded versions of the characters.

(char-ci<? #\z #\Z) =⇒ #f

(char-ci=? #\z #\Z) =⇒ #t

(char-ci=? #\ς #\σ) =⇒ #t

(char-alphabetic? char) procedure
(char-numeric? char) procedure
(char-whitespace? char) procedure
(char-upper-case? char) procedure
(char-lower-case? char) procedure
(char-title-case? char) procedure

These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper case, lower case, or title
case characters, respectively; otherwise they return #f.

A character is alphabetic if it has the Unicode “Alpha-
betic” property. A character is numeric if it has the Uni-
code “Numeric” property. A character is whitespace if has
the Unicode “White Space” property. A character is upper
case if it has the Unicode “Uppercase” property, lower case
if it has the “Lowercase” property, and title case if it is in
the Lt general category.

(char-alphabetic? #\a) =⇒ #t

(char-numeric? #\1) =⇒ #t

(char-whitespace? #\space) =⇒ #t

(char-whitespace? #\x00A0) =⇒ #t

(char-upper-case? #\Σ) =⇒ #t

4 Revised5.94 Scheme Libraries

(char-lower-case? #\σ) =⇒ #t

(char-lower-case? #\x00AA) =⇒ #t

(char-title-case? #\I) =⇒ #f

(char-title-case? #\x01C5) =⇒ #t

(char-general-category char) procedure

Returns a symbol representing the Unicode general cate-
gory of char , one of Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl,
No, Ps, Pe, Pi, Pf, Pd, Pc, Po, Sc, Sm, Sk, So, Zs, Zp, Zl,
Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a) =⇒ Ll

(char-general-category #\space)

=⇒ Zs

(char-general-category #\x10FFFF)

=⇒ Cn

1.2. Strings

(string-upcase string) procedure
(string-downcase string) procedure
(string-titlecase string) procedure
(string-foldcase string) procedure

These procedures take a string argument and return a
string result. They are defined in terms of Unicode’s locale-
independent case mappings from Unicode-scalar-value se-
quences to scalar-value sequences. In particular, the length
of the result string can be different from the length of the
input string. When the specified result is equal in the sense
of string=? to the argument, these procedures may return
the argument instead of a newly allocated string.

The string-upcase procedure converts a string to upper
case; string-downcase converts a string to lower case.
The string-foldcase procedure converts the string to its
case-folded counterpart, using the full case-folding map-
ping, but without the special mappings for Turkic lan-
guages. The string-titlecase procedure converts the
first cased character of each word via char-titlecase, and
downcases all other cased characters.

(string-upcase "Hi") =⇒ "HI"

(string-downcase "Hi") =⇒ "hi"

(string-foldcase "Hi") =⇒ "hi"

(string-upcase "Straße") =⇒ "STRASSE"

(string-downcase "Straße") =⇒ "straße"

(string-foldcase "Straße") =⇒ "strasse"

(string-downcase "STRASSE") =⇒ "strasse"

(string-downcase "Σ") =⇒ "σ"

; Chi Alpha Omicron Sigma:

(string-upcase "XAOΣ") =⇒ "XAOΣ"

(string-downcase "XAOΣ") =⇒ "χαoς"
(string-downcase "XAOΣΣ") =⇒ "χαoσς"
(string-downcase "XAOΣ Σ")=⇒ "χαoς σ"
(string-foldcase "XAOΣΣ") =⇒ "χαoσσ"
(string-upcase "χαoς") =⇒ "XAOΣ"

(string-upcase "χαoσ") =⇒ "XAOΣ"

(string-titlecase "kNock KNoCK")

=⇒ "Knock Knock"

(string-titlecase "who’s there?")

=⇒ "Who’s There?"

(string-titlecase "r6rs") =⇒ "R6Rs"

(string-titlecase "R6RS") =⇒ "R6Rs"

Note: The case mappings needed for implementing
these procedures can be extracted from UnicodeData.txt,
SpecialCasing.txt, WordBreakProperty.txt (the “MidLet-
ter” property partly defines case-ignorable characters), and
CaseFolding.txt from the Unicode Consortium.

Since these procedures are locale-independent, they may not be

appropriate for some locales.

Note: Word breaking, as needed for the correct casing of Σ and

for string-titlecase, is specified in Unicode Standard Annex

#29 [5].

(string-ci=? string1 string2 string3 . . .) procedure
(string-ci<? string1 string2 string3 . . .) procedure
(string-ci>? string1 string2 string3 . . .) procedure
(string-ci<=? string1 string2 string3 . . .) procedure
(string-ci>=? string1 string2 string3 . . .) procedure

These procedures are similar to string=?, etc., but operate
on the case-folded versions of the strings.

(string-ci<? "z" "Z") =⇒ #f

(string-ci=? "z" "Z") =⇒ #t

(string-ci=? "Straße" "Strasse")

=⇒ #t

(string-ci=? "Straße" "STRASSE")

=⇒ #t

(string-ci=? "XAOΣ" "χαoσ")
=⇒ #t

(string-normalize-nfd string) procedure
(string-normalize-nfkd string) procedure
(string-normalize-nfc string) procedure
(string-normalize-nfkc string) procedure

These procedures take a string argument and return a
string result, which is the input string normalized to Uni-
code normalization form D, KD, C, or KC, respectively.
When the specified result is equal in the sense of string=?
to the argument, these procedures may return the argu-
ment instead of a newly allocated string.

2. Bytevectors 5

(string-normalize-nfd "\xE9;")

=⇒ "\x65;\x301;"

(string-normalize-nfc "\xE9;")

=⇒ "\xE9;"

(string-normalize-nfd "\x65;\x301;")

=⇒ "\x65;\x301;"

(string-normalize-nfc "\x65;\x301;")

=⇒ "\xE9;"

2. Bytevectors

Many applications deal with blocks of binary data by ac-
cessing them in various ways—extracting signed or un-
signed numbers of various sizes. Therefore, the (rnrs
bytevector (6)) library provides a single type for blocks
of binary data with multiple ways to access that data. It
deals with integers and floating-point representations in
various sizes with specified endianness, because these are
the most frequent applications.

Bytevectors are objects of a disjoint type. Conceptually,
a bytevector represents a sequence of 8-bit bytes. The de-
scription of bytevectors uses the term byte for an exact
integer in the interval {−128, . . . , 127} and the term octet
for an exact integer in the interval {0, . . . , 255}. A byte
corresponds to its two’s complement representation as an
octet.

The length of a bytevector is the number of bytes it con-
tains. This number is fixed. A valid index into a bytevec-
tor is an exact, non-negative integer. The first byte of a
bytevector has index 0; the last byte has an index one less
than the length of the bytevector.

Generally, the access procedures come in different flavors
according to the size of the represented integer and the
endianness of the representation. The procedures also dis-
tinguish signed and unsigned representations. The signed
representations all use two’s complement.

Like list and vector literals, literals representing bytevec-
tors must be quoted:

’#vu8(12 23 123) =⇒ #vu8(12 23 123)

2.1. Endianness

Many operations described in this chapter accept an endi-
anness argument. Endianness describes the encoding of ex-
act integers as several contiguous bytes in a bytevector [4].
For this purpose, the binary representation of the integer
is split into consecutive bytes. The little-endian encod-
ing places the least significant byte of an integer first, with
the other bytes following in increasing order of significance.
The big-endian encoding places the most significant byte of
an integer first, with the other bytes following in decreasing
order of significance.

This terminology also applies to IEEE-754 numbers: IEEE-
754 describes how to represent a floating-point number as
an exact integer, and endianness describes how the bytes
of such an integer are laid out in a bytevector.

Note: Little- and big-endianness are only the most common

kinds of endianness. Some architectures distinguish between

the endianness at different levels of a binary representation.

2.2. General operations

(endianness 〈endianness symbol〉) syntax

〈Endianness symbol〉 must be a symbol describing an endi-
anness. An implementation must support at least the sym-
bols big and little, but may support other endianness
symbols. (endianness 〈endianness symbol〉) evaluates to
the symbol named 〈endianness symbol〉. Whenever one of
the procedures operating on bytevectors accepts an endi-
anness as an argument, that argument must be one of these
symbols. It is a syntax violation for 〈endianness symbol〉
to be anything other than an endianness symbol supported
by the implementation.

Note: Implementors are encouraged to use widely accepted

designations for endianness symbols other than big and little.

(native-endianness) procedure

Returns the endianness symbol associated implemen-
tation’s preferred endianness (usually that of the un-
derlying machine architecture). This may be any
〈endianness symbol〉, including a symbol other than big
and little.

(bytevector? obj) procedure

Returns #t if obj is a bytevector, otherwise returns #f.

(make-bytevector k) procedure
(make-bytevector k fill) procedure

Returns a newly allocated bytevector of k bytes.

If the fill argument is missing, the initial contents of the
returned bytevector are unspecified.

If the fill argument is present, it must be an exact inte-
ger in the interval {−128, . . . 255} that specifies the initial
value for the bytes of the bytevector: If fill is positive, it
is interpreted as an octet; if it is negative, it is interpreted
as a byte.

(bytevector-length bytevector) procedure

Returns, as an exact integer, the number of bytes in
bytevector .

6 Revised5.94 Scheme Libraries

(bytevector=? bytevector1 bytevector2) procedure

Returns #t if bytevector1 and bytevector2 are equal—that
is, if they have the same length and equal bytes at all valid
indices. It returns #f otherwise.

(bytevector-fill! bytevector fill)

The fill argument is as in the description of the
make-bytevector procedure. Stores fill in every element
of bytevector and returns unspecified values. Analogous to
vector-fill!.

(bytevector-copy! source source-start procedure
target target-start k)

Source and target must be bytevectors. Source-start ,
target-start , and k must be non-negative exact integers
that satisfy

0 ≤ source-start ≤ source-start + k ≤ lsource
0 ≤ target-start ≤ target-start + k ≤ ltarget

where lsource is the length of source and ltarget is the
length of target .

The bytevector-copy! procedure copies the bytes from
source at indices

{source-start , . . . source-start + k − 1}

to consecutive indices in target starting at target-index .

This must work even if the memory regions for the source
and the target overlap, i.e., the bytes at the target location
after the copy must be equal to the bytes at the source
location before the copy.
This returns unspecified values.

(let ((b (u8-list->bytevector ’(1 2 3 4 5 6 7 8))))

(bytevector-copy! b 0 b 3 4)

(bytevector->u8-list b)) =⇒ (1 2 3 1 2 3 4 8)

(bytevector-copy bytevector) procedure

Returns a newly allocated copy of bytevector .

2.3. Operations on bytes and octets

(bytevector-u8-ref bytevector k) procedure
(bytevector-s8-ref bytevector k) procedure

K must be a valid index of bytevector .

The bytevector-u8-ref procedure returns the byte at in-
dex k of bytevector , as an octet.

The bytevector-s8-ref procedure returns the byte at in-
dex k of bytevector , as a (signed) byte.

(let ((b1 (make-bytevector 16 -127))

(b2 (make-bytevector 16 255)))

(list

(bytevector-s8-ref b1 0)

(bytevector-u8-ref b1 0)

(bytevector-s8-ref b2 0)

(bytevector-u8-ref b2 0)))=⇒ (-127 129 -1 255)

(bytevector-u8-set! bytevector k octet) procedure
(bytevector-s8-set! bytevector k byte) procedure

K must be a valid index of bytevector .

The bytevector-u8-set! procedure stores octet in ele-
ment k of bytevector .

The bytevector-s8-set! procedure stores the two’s com-
plement representation of byte in element k of bytevector .

Both procedures return unspecified values.

(let ((b (make-bytevector 16 -127)))

(bytevector-s8-set! b 0 -126)

(bytevector-u8-set! b 1 246)

(list

(bytevector-s8-ref b 0)

(bytevector-u8-ref b 0)

(bytevector-s8-ref b 1)

(bytevector-u8-ref b 1)))=⇒ (-126 130 -10 246)

(bytevector->u8-list bytevector) procedure
(u8-list->bytevector list) procedure

List must be a list of octets.

The bytevector->u8-list procedure returns a newly al-
located list of the octets of bytevector in the same order.

The u8-list->bytevector procedure returns a newly al-
located bytevector whose elements are the elements of list
list , in the same order. It is analogous to list->vector.

2.4. Operations on integers of arbitrary size

(bytevector-uint-ref bytevector k endianness size)
procedure

(bytevector-sint-ref bytevector k endianness size)
procedure

(bytevector-uint-set! bytevector k n endianness size)
procedure

(bytevector-sint-set! bytevector k n endianness size)
procedure

Size must be a positive exact integer. {k , . . . , k + size − 1}
must be valid indices of bytevector .

2. Bytevectors 7

bytevector-uint-ref retrieves the exact integer corre-
sponding to the unsigned representation of size size and
specified by endianness at indices {k , . . . , k + size − 1}.

bytevector-sint-ref retrieves the exact integer corre-
sponding to the two’s complement representation of size
size and specified by endianness at indices {k , . . . , k+size−
1}.

For bytevector-uint-set!, n must be an exact integer in
the interval {0, . . . , 256size − 1}.

bytevector-uint-set! stores the unsigned representation
of size size and specified by endianness into bytevector at
indices {k , . . . , k + size − 1}.

For bytevector-sint-set!, n must be an exact in-
teger in the interval {−256size/2, . . . , 256size/2 − 1}.
bytevector-sint-set! stores the two’s complement rep-
resentation of size size and specified by endianness into
bytevector at indices {k , . . . , k + size − 1}.

The . . . -set! procedures return unspecified values.

(define b (make-bytevector 16 -127))

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

(endianness little) 16)

(bytevector-uint-ref b 0 (endianness little) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness little) 16)

=⇒ -3

(bytevector->u8-list b)

=⇒ (253 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255)

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

(endianness big) 16)

(bytevector-uint-ref b 0 (endianness big) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness big) 16)

=⇒ -3

(bytevector->u8-list b)

=⇒ (255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253))

(bytevector->uint-list bytevector endianness size)
procedure

(bytevector->sint-list bytevector endianness size)
procedure

(uint-list->bytevector list endianness size)

procedure
(sint-list->bytevector list endianness size)

procedure

Size must be a positive exact integer. For
uint-list->bytevector, list must be a list of ex-
act integers in the interval {0, . . . , 256size − 1}. For
sint-list->bytevector, list must be a list of exact
integers in the interval {−256size/2, . . . , 256size/2 − 1}.
The length of bytevector or, respectively, of list must be
divisible by size.

These procedures convert between lists of integers and
their consecutive representations according to size and
endianness in the bytevector objects in the same way as
bytevector->u8-list and u8-list->bytevector do for
one-byte representations.

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))

(bytevector->sint-list b (endianness little) 2))

=⇒ (513 -253 513 513)

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))

(bytevector->uint-list b (endianness little) 2))

=⇒ (513 65283 513 513)

2.5. Operations on 16-bit integers

(bytevector-u16-ref bytevector k endianness)
procedure

(bytevector-s16-ref bytevector k endianness)
procedure

(bytevector-u16-native-ref bytevector k) procedure
(bytevector-s16-native-ref bytevector k) procedure
(bytevector-u16-set! bytevector k n endianness)

procedure
(bytevector-s16-set! bytevector k n endianness)

procedure
(bytevector-u16-native-set! bytevector k n)

procedure
(bytevector-s16-native-set! bytevector k n)

procedure

K must be a valid index of bytevector ; so
must k + 1. For bytevector-u16-set!
and bytevector-u16-native-set!, n
must be an exact integer in the interval
{0, . . . , 216 − 1}. For bytevector-s16-set! and
bytevector-s16-native-set!, n must be an exact
integer in the interval {−215, . . . , 215 − 1}.

These retrieve and set two-byte representations of num-
bers at indices k and k + 1, according to the endianness
specified by endianness. The procedures with u16 in their
names deal with the unsigned representation; those with

8 Revised5.94 Scheme Libraries

s16 in their names deal with the two’s complement repre-
sentation.

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 2.

The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u16-ref b 14 (endianness little))

=⇒ 65023

(bytevector-s16-ref b 14 (endianness little))

=⇒ -513

(bytevector-u16-ref b 14 (endianness big))

=⇒ 65533

(bytevector-s16-ref b 14 (endianness big))

=⇒ -3

(bytevector-u16-set! b 0 12345 (endianness little))

(bytevector-u16-ref b 0 (endianness little))

=⇒ 12345

(bytevector-u16-native-set! b 0 12345)

(bytevector-u16-native-ref b 0)=⇒ 12345

(bytevector-u16-ref b 0 (endianness little))

=⇒ unspecified

2.6. Operations on 32-bit integers

(bytevector-u32-ref bytevector k endianness)
procedure

(bytevector-s32-ref bytevector k endianness)
procedure

(bytevector-u32-native-ref bytevector k) procedure
(bytevector-s32-native-ref bytevector k) procedure
(bytevector-u32-set! bytevector k n endianness)

procedure
(bytevector-s32-set! bytevector k n endianness)

procedure
(bytevector-u32-native-set! bytevector k n)

procedure
(bytevector-s32-native-set! bytevector k n)

procedure

{k , . . . , k + 3} must be valid indices of
bytevector . For bytevector-u32-set! and
bytevector-u32-native-set!, n must be an
exact integer in the interval {0, . . . , 232 −
1}. For bytevector-s32-set! and
bytevector-s32-native-set!, n must be an exact
integer in the interval {−231, . . . , 232 − 1}.

These retrieve and set four-byte representations of num-
bers at indices {k , . . . , k + 3}, according to the endianness
specified by endianness. The procedures with u32 in their
names deal with the unsigned representation; those with
s32 with the two’s complement representation.

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 4.

The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u32-ref b 12 (endianness little))

=⇒ 4261412863

(bytevector-s32-ref b 12 (endianness little))

=⇒ -33554433

(bytevector-u32-ref b 12 (endianness big))

=⇒ 4294967293

(bytevector-s32-ref b 12 (endianness big))

=⇒ -3

2.7. Operations on 64-bit integers

(bytevector-u64-ref bytevector k endianness)
procedure

(bytevector-s64-ref bytevector k endianness)
procedure

(bytevector-u64-native-ref bytevector k) procedure
(bytevector-s64-native-ref bytevector k) procedure
(bytevector-u64-set! bytevector k n endianness)

procedure
(bytevector-s64-set! bytevector k n endianness)

procedure
(bytevector-u64-native-set! bytevector k n)

procedure
(bytevector-s64-native-set! bytevector k n)

procedure

{k , . . . , k + 7} must be valid indices of
bytevector . For bytevector-u64-set! and
bytevector-u64-native-set!, n must be an
exact integer in the interval {0, . . . , 264 −
1}. For bytevector-s64-set! and
bytevector-s64-native-set!, n must be an exact
integer in the interval {−263, . . . , 264 − 1}.
These retrieve and set eight-byte representations of num-
bers at indices {k , . . . , k + 7}, according to the endianness
specified by endianness. The procedures with u64 in their
names deal with the unsigned representation; those with
s64 with the two’s complement representation.

2. Bytevectors 9

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 8.

The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u64-ref b 8 (endianness little))

=⇒ 18302628885633695743

(bytevector-s64-ref b 8 (endianness little))

=⇒ -144115188075855873

(bytevector-u64-ref b 8 (endianness big))

=⇒ 18446744073709551613

(bytevector-s64-ref b 8 (endianness big))

=⇒ -3

2.8. Operations on IEEE-754 numbers

(bytevector-ieee-single-native-ref bytevector k)
procedure

(bytevector-ieee-single-ref bytevector k endianness)
procedure

{k , . . . , k + 3} must be valid indices of bytevector . For
bytevector-ieee-single-native-ref, k must be a mul-
tiple of 4.

These procedures return the inexact real that best repre-
sents the IEEE-754 single precision number represented by
the four bytes beginning at index k .

(bytevector-ieee-double-native-ref bytevector k)
procedure

(bytevector-ieee-double-ref bytevector k endianness)
procedure

{k , . . . , k + 7} must be valid indices of bytevector . For
bytevector-ieee-double-native-ref, k must be a mul-
tiple of 8.

These procedures return the inexact real that best repre-
sents the IEEE-754 single precision number represented by
the eight bytes beginning at index k .

(bytevector-ieee-single-native-set! bytevector k x)
procedure

(bytevector-ieee-single-set! bytevector procedure
k x endianness)

{k , . . . , k + 3} must be valid indices of bytevector . For
bytevector-ieee-single-native-set!, k must be a
multiple of 4.

These procedures store an IEEE-754 single precision repre-
sentation of x into elements k through k + 3 of bytevector ,
and return unspecified values.

(bytevector-ieee-double-native-set! bytevector k x)
procedure

(bytevector-ieee-double-set! bytevector procedure
k x endianness)

{k , . . . , k + 7} must be valid indices of bytevector . For
bytevector-ieee-double-native-set!, k must be a
multiple of 8.

These procedures store an IEEE-754 double precision rep-
resentation of x into elements k through k+7 of bytevector ,
and return unspecified values.

2.9. Operations on strings

This section describes procedures that convert between
strings and bytevectors containing Unicode encodings of
those strings. When decoding bytevectors, encoding er-
rors are handled as with the replace semantics of textual
I/O (see section 8.2.4): If an invalid or incomplete char-
acter encoding is encountered, then the replacement char-
acter U+FFFD is appended to the string being generated,
an appropriate number of bytes are ignored, and decoding
continues with the following bytes.

(string->utf8 string) procedure

Returns a newly allocated (unless empty) bytevector that
contains the UTF-8 encoding of the given string.

(string->utf16 string) procedure
(string->utf16 string endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The string->utf16 procedure returns
a newly allocated (unless empty) bytevector that contains
the UTF-16BE or UTF-16LE encoding of the given string
(with no byte-order mark). If endianness is not specified
or is big, then UTF-16BE is used. If endianness is little,
then UTF-16LE is used.

(string->utf32 string) procedure
(string->utf32 string endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The string->utf32 returns a newly al-
located (unless empty) bytevector that contains the UTF-
32BE or UTF-32LE encoding of the given string (with no
byte mark). If endianness is not specified or is big, then
UTF-32BE is used. If endianness is little, then UTF-
32LE is used.

10 Revised5.94 Scheme Libraries

(utf8->string bytevector) procedure

Returns a newly allocated (unless empty) string whose
character sequence is encoded by the given bytevector.

(utf16->string bytevector) procedure
(utf16->string bytevector endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The utf16->string procedure returns a
newly allocated (unless empty) string whose character se-
quence is encoded by the given bytevector. If endianness
is big, then UTF-16BE is used. If endianness is little,
then UTF-16LE is used. If endianness is not specified,
bytevector is decoded according to UTF-16: If it starts with
the bytes #xFE, #xFF (a big-endian byte-order mark), then
UTF-16BE is used for the remaining contents of bytevector ;
if it starts with the bytes #xFF, #xFE (a little-endian
byte-order mark), then UTF-16LE is used for the remain-
ing contents of bytevector ; otherwise the entire contents of
bytevector are decoded according to UTF-16BE.

(utf32->string bytevector) procedure
(utf32->string bytevector endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The utf32->string procedure returns
a newly allocated (unless empty) string whose character
sequence is encoded by the given bytevector. If endianness
is big, then UTF-32BE is used. If endianness is little,
then UTF-32LE is used. If endianness is not specified,
bytevector is decoded according to UTF-32: If it starts with
the bytes #x00, #x00, #xFE, #xFF (a big-endian byte-order
mark), then UTF-32BE is used for the remaining contents
of bytevector ; if it starts with the bytes #xFF, #xFE, #x00,
#x00 (a little-endian byte-order mark), then UTF-32LE is
used for the remaining contents of bytevector ; otherwise
the entire contents of bytevector are decoded according to
UTF-32BE.

3. List utilities

This chapter describes the (rnrs lists (6)) library.

(find proc list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list . The find procedure applies
proc to the elements of list in order. If proc returns a
true value for an element, find immediately returns that
element. If proc returns #f for all elements of the list, find
returns #f. Proc is always called in the same dynamic
environment as find itself.

(find even? ’(3 1 4 1 5 9)) =⇒ 4

(find even? ’(3 1 5 1 5 9)) =⇒ #f

Implementation responsibilities: The implementation must
check that list is a chain of pairs up to the found element, or
that it is indeed a list if no element is found. It should not
check that it is a chain of pairs beyond the found element.
The implementation must check the restrictions on proc to
the extent performed by applying it as described.

(for-all proc list1 list2 . . . listn) procedure
(exists proc list1 list2 . . . listn) procedure

The lists should all have the same length, and proc should
accept n arguments and return a single value. Proc should
not mutate the list arguments.

For natural numbers i = 0, 1, . . ., the for-all procedure
successively applies proc to arguments x1

i . . . xn
i , where xj

i

is the ith element of listj , until #f is returned. If proc
returns true values for all but the last element of list1,
for-all performs a tail call of proc on the kth elements,
where k is the length of list1. If proc returns #f on any
set of elements, for-all returns #f after the first such
application of proc. If the lists are all empty, for-all
returns #t.

For natural numbers i = 0, 1, . . ., the exists procedure
applies proc successively to arguments x1

i . . . xn
i , where xj

i

is the ith element of listj , until a true value is returned. If
proc returns #f for all but the last elements of the lists,
exists performs a tail call of proc on the kth elements,
where k is the length of list1. If proc returns a true value
on any set of elements, exists returns that value after the
first such application of proc. If the lists are all empty,
exists returns #f.

Proc is always called in the same dynamic environment as
for-all or, respectively, exists itself.

(for-all even? ’(3 1 4 1 5 9))

=⇒ #f

(for-all even? ’(3 1 4 1 5 9 . 2))

=⇒ #f

(for-all even? ’(2 4 14)) =⇒ #t

(for-all even? ’(2 4 14 . 9))

=⇒ &assertion exception
(for-all (lambda (n) (and (even? n) n)) ’(2 4 14))

=⇒ 14

(for-all < ’(1 2 3) ’(2 3 4))=⇒ #t

(for-all < ’(1 2 4) ’(2 3 4))=⇒ #f

(exists even? ’(3 1 4 1 5 9))

=⇒ #t

(exists even? ’(3 1 1 5 9)) =⇒ #f

(exists even? ’(3 1 1 5 9 . 2))

=⇒ &assertion exception
(exists (lambda (n) (and (even? n) n)) ’(2 1 4 14))

=⇒ 2

(exists < ’(1 2 4) ’(2 3 4))=⇒ #t

(exists > ’(1 2 3) ’(2 3 4))=⇒ #f

3. List utilities 11

Implementation responsibilities: The implementation must
check that the lists are chains of pairs to the extent neces-
sary to determine the return value. If this requires travers-
ing the lists entirely, the implementation should check that
the lists all have the same length. If not, it should not
check that the lists are chains of pairs beyond the traver-
sal. The implementation must check the restrictions on
proc to the extent performed by applying it as described.

(filter proc list) procedure
(partition proc list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list . The filter procedure applies
proc to each element of list and returns a list of the ele-
ments of list for which proc returned a true value. The
partition procedure also applies proc to each element of
list , but returns two values, the first one a list of the ele-
ments of list for which proc returned a true value, and the
second a list of the elements of list for which proc returned
#f. In both cases, the elements of the result list(s) are in
the same order as they appear in the input list. Proc is
always called in the same dynamic environment as filter
or, respectively, partition itself. If multiple returns occur
from filter or partitions, the return values returned by
earlier returns are not mutated.

(filter even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6)

(partition even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6) (3 1 1 5 9) ; two values

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described.

(fold-left combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must
be a procedure. It should accept one more argument than
there are lists and return a single value. It should not
mutate the list arguments. The fold-left procedure iter-
ates the combine procedure over an accumulator value and
the elements of the lists from left to right, starting with
an accumulator value of nil . More specifically, fold-left
returns nil if the lists are empty. If they are not empty,
combine is first applied to nil and the respective first el-
ements of the lists in order. The result becomes the new
accumulator value, and combine is applied to the new accu-
mulator value and the respective next elements of the list .
This step is repeated until the end of the list is reached;
then the accumulator value is returned. Combine is always
called in the same dynamic environment as fold-left it-
self.

(fold-left + 0 ’(1 2 3 4 5))=⇒ 15

(fold-left (lambda (a e) (cons e a)) ’()

’(1 2 3 4 5))

=⇒ (5 4 3 2 1)

(fold-left (lambda (count x)

(if (odd? x) (+ count 1) count))

0

’(3 1 4 1 5 9 2 6 5 3))

=⇒ 7

(fold-left (lambda (max-len s)

(max max-len (string-length s)))

0

’("longest" "long" "longer"))

=⇒ 7

(fold-left cons ’(q) ’(a b c))

=⇒ ((((q) . a) . b) . c)

(fold-left + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on combine to
the extent performed by applying it as described.

(fold-right combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must
be a procedure. It should accept one more argument than
there are lists and return a single value. Combine should
not mutate the list arguments. The fold-right proce-
dure iterates the combine procedure over the elements of
the lists from right to left and an accumulator value, start-
ing with an accumulator value of nil . More specifically,
fold-right returns nil if the lists are empty. If they are
not empty, combine is first applied to the respective last
elements of the lists in order and nil . The result becomes
the new accumulator value, and combine is applied to the
respective previous elements of the lists and the new accu-
mulator value. This step is repeated until the beginning of
the list is reached; then the accumulator value is returned.
Proc is always called in the same dynamic environment as
fold-right itself.

(fold-right + 0 ’(1 2 3 4 5))=⇒ 15

(fold-right cons ’() ’(1 2 3 4 5))

=⇒ (1 2 3 4 5)

(fold-right (lambda (x l)

(if (odd? x) (cons x l) l))

’()

’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 5)

12 Revised5.94 Scheme Libraries

(fold-right cons ’(q) ’(a b c))

=⇒ (a b c q)

(fold-right + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on combine to
the extent performed by applying it as described.

(remp proc list) procedure
(remove obj list) procedure
(remv obj list) procedure
(remq obj list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list . Each of these procedures
returns a list of the elements of list that do not satisfy a
given condition. The remp procedure applies proc to each
element of list and returns a list of the elements of list for
which proc returned #f. Proc is always called in the same
dynamic environment as remp itself. The remove, remv,
and remq procedures return a list of the elements that are
not obj . The remq procedure uses eq? to compare obj with
the elements of list , while remv uses eqv? and remove uses
equal?. The elements of the result list are in the same
order as they appear in the input list.

(remp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 5)

(remove 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remv 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remq ’foo ’(bar foo baz)) =⇒ (bar baz)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described.

(memp proc list) procedure
(member obj list) procedure
(memv obj list) procedure
(memq obj list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list .

These procedures return the first sublist of list whose car
satisfies a given condition, where the sublists of lists are
the lists returned by (list-tail list k) for k less than

the length of list . The memp procedure applies proc to the
cars of the sublists of list until it finds one for which proc
returns a true value, without traversing list further. Proc
is always called in the same dynamic environment as memp
itself. The member, memv, and memq procedures look for the
first occurrence of obj . If list does not contain an element
satisfying the condition, then #f (not the empty list) is
returned. The member procedure uses equal? to compare
obj with the elements of list , while memv uses eqv? and
memq uses eq?.

(memp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (4 1 5 9 2 6 5)

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

Implementation responsibilities: The implementation must
check that list is a chain of pairs up to the found element, or
that it is indeed a list if no element is found. It should not
check that it is a chain of pairs beyond the found element.
The implementation must check the restrictions on proc to
the extent performed by applying it as described.

Rationale: Although they are ordinarily used as predicates,

memp, member, memv, memq, do not have question marks in their

names because they return useful values rather than just #t or

#f.

(assp proc alist) procedure
(assoc obj alist) procedure
(assv obj alist) procedure
(assq obj alist) procedure

Alist (for “association list”) should be a list of pairs. Proc
should accept one argument and return a single value. Proc
should not mutate alist .

These procedures find the first pair in alist whose car field
satisfies a given condition, and returns that pair without
traversing alist further. If no pair in alist satisfies the
condition, then #f is returned. The assp procedure suc-
cessively applies proc to the car fields of alist and looks
for a pair for which it returns a true value. Proc is always
called in the same dynamic environment as assp itself. The
assoc, assv, and assq procedures look for a pair that has
obj as its car. The assoc procedure uses equal? to com-
pare obj with the car fields of the pairs in alist , while assv
uses eqv? and assq uses eq?.

Implementation responsibilities: The implementation must
check that alist is a chain of pairs containing pairs up to
the found pair, or that it is indeed a list of pairs if no

5. Control structures 13

element is found. It should not check that it is a chain of
pairs beyond the found element. The implementation must
check the restrictions on proc to the extent performed by
applying it as described.

(define d ’((3 a) (1 b) (4 c)))

(assp even? d) =⇒ (4 c)

(assp odd? d) =⇒ (3 a)

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

(cons* obj1 . . . objn obj) procedure
(cons* obj) procedure

If called with at least two arguments, cons* returns a
freshly allocated chain of pairs whose cars are obj1, . . . ,
objn, and whose last cdr is obj . If called with only one
argument, cons* returns that argument.

(cons* 1 2 ’(3 4 5)) =⇒ (1 2 3 4 5)

(cons* 1 2 3) =⇒ (1 2 . 3)

(cons* 1) =⇒ 1

4. Sorting

This chapter describes the (rnrs sorting (6)) library
for sorting lists and vectors.

(list-sort proc list) procedure
(vector-sort proc vector) procedure

Proc should accept any two elements of the list or vector,
and should not have any side effects. Proc should return a
true value when its first argument is strictly less than its
second, and #f otherwise.

The list-sort and vector-sort procedures perform a
stable sort of list or vector in ascending order according
to proc, without changing list or vector in any way. The
list-sort procedure returns a list, and vector-sort re-
turns a vector. The results may be eq? to the argument
when the argument is already sorted, and the result of
list-sort may share structure with a tail of the origi-
nal list. The sorting algorithm performs O(n lg n) calls to
proc where n is the length of list or vector , and all argu-
ments passed to proc are elements of the list or vector being
sorted, but the pairing of arguments and the sequencing of
calls to proc are not specified.

(list-sort < ’(3 5 2 1)) =⇒ (1 2 3 5)

(vector-sort < ’#(3 5 2 1)) =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described.

(vector-sort! proc vector) procedure

Proc should accept any two elements of the vector, and
should not have any side effects. Proc should return a true
value when its first argument is strictly less than its second,
and #f otherwise.

The vector-sort! procedure destructively sorts vector in
ascending order according to proc. The sorting algorithm
performs O(n2) calls to proc where n is the length of vector ,
and all arguments passed to proc are elements of the vector
being sorted, but the pairing of arguments and the sequenc-
ing of calls to proc are not specified. The sorting algorithm
may be unstable. The procedure returns unspecified val-
ues.

(define v (vector 3 5 2 1))

(vector-sort! v) =⇒ unspecified
v =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described.

5. Control structures

This chapter describes the (rnrs control (6)) library.

(when 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax
(unless 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

Syntax: 〈Test〉 must be an expression.

Semantics: A when expression is evaluated by evaluating
the 〈test〉 expression. If 〈test〉 evaluates to a true value, the
remaining 〈expression〉s are evaluated in order, and the re-
sults of the last 〈expression〉 are returned as the results of
the entire when expression. Otherwise, the when expression
returns unspecified values. An unless expression is evalu-
ated by evaluating the 〈test〉 expression. If 〈test〉 evaluates
to #f, the remaining 〈expression〉s are evaluated in order,
and the results of the last 〈expression〉 are returned as the
results of the entire unless expression. Otherwise, the
unless expression returns unspecified values.

(when (> 3 2) ’greater) =⇒ greater

(when (< 3 2) ’greater) =⇒ unspecified
(unless (> 3 2) ’less) =⇒ unspecified
(unless (< 3 2) ’less) =⇒ less

14 Revised5.94 Scheme Libraries

The when and unless expressions are derived forms. They
could be defined in terms of base library forms by the fol-
lowing macros:

(define-syntax when

(syntax-rules ()

((when test result1 result2 ...)

(if test

(begin result1 result2 ...)))))

(define-syntax unless

(syntax-rules ()

((unless test result1 result2 ...)

(if (not test)

(begin result1 result2 ...)))))

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . .)
(〈test〉 〈expression〉 . . .)

〈command〉 . . .)

Syntax: The 〈init〉s, 〈step〉s, 〈test〉s, and 〈command〉s must
be expressions. The 〈variable〉s must be pairwise distinct
variables.

Semantics: The do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on
each iteration.

A do expression is evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is
#f, then the 〈command〉s are evaluated in order for effect,
the 〈step〉 expressions are evaluated in some unspecified
order, the 〈variable〉s are bound to fresh locations holding
the results, and the next iteration begins.

If 〈test〉 evaluates to a true value, the 〈expression〉s are
evaluated from left to right and the values of the last
〈expression〉 are returned. If no 〈expression〉s are present,
then the values of the do expression are unspecified.

The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s. It is a syntax
violation for a 〈variable〉 to appear more than once in the
list of do variables.

A 〈step〉 may be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

If a do expression appears in a tail context, the
〈expression〉s are a 〈tail sequence〉 in the sense of report
section 9.21, i.e., the last 〈expression〉 is also in a tail con-
text.

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

The following definition of do uses a trick to expand the
variable clauses.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

#f ; avoid empty begin

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

(case-lambda 〈clause〉 . . .) syntax

Syntax: Each 〈clause〉 must be of the form

(〈formals〉 〈body〉)

〈Formals〉 must be as in a lambda form (report sec-
tion 9.5.2), and 〈body〉 is as described in report section 9.4.

Semantics: A case-lambda expression evaluates to a pro-
cedure. This procedure, when applied, tries to match its
arguments to the 〈clause〉s in order. The arguments match
a clause if one of the following conditions is fulfilled:

• 〈Formals〉 has the form (〈variable〉 . . .) and the num-
ber of arguments is the same as the number of formal
parameters in 〈formals〉.

• 〈Formals〉 has the form
(〈variable1〉 . . . 〈variablen〉 . 〈variablen+1)〉
and the number of arguments is at least n.

• 〈Formals〉 has the form 〈variable〉.

6. Records 15

For the first clause matched by the arguments, the variables
of the 〈formals〉 are bound to fresh locations containing the
argument values in the same arrangement as with lambda.

If the arguments match none of the clauses, an exception
with condition type &assertion is raised.

(define foo

(case-lambda

(() ’zero)

((x) (list ’one x))

((x y) (list ’two x y))

((a b c d . e) (list ’four a b c d e))

(rest (list ’rest rest))))

(foo) =⇒ zero

(foo 1) =⇒ (one 1)

(foo 1 2) =⇒ (two 1 2)

(foo 1 2 3) =⇒ (rest (1 2 3))

(foo 1 2 3 4) =⇒ (four 1 2 3 4 ())

The case-lambda keyword can be defined in terms of
lambda by the following macros:

(define-syntax case-lambda

(syntax-rules ()

(((fmls b1 b2 ...))

(lambda fmls b1 b2 ...))

(((fmls b1 b2 ...) ...)

(lambda args

(let ((n (length args)))

(case-lambda-help args n

(fmls b1 b2 ...) ...))))))

(define-syntax case-lambda-help

(syntax-rules ()

((args n)

(assertion-violation #f

"unexpected number of arguments"))

((args n ((x ...) b1 b2 ...) more ...)

(if (= n (length ’(x ...)))

(apply (lambda (x ...) b1 b2 ...) args)

(case-lambda-help args n more ...)))

((args n ((x1 x2 r) b1 b2 ...) more ...)

(if (>= n (length ’(x1 x2 ...)))

(apply (lambda (x1 x2 r) b1 b2 ...)

args)

(case-lambda-help args n more ...)))

((args n (r b1 b2 ...) more ...)

(apply (lambda r b1 b2 ...) args))))

6. Records

This section describes abstractions for creating new data
types representing records—data structures with named
fields. The record mechanism comes in three libraries:

• the (rnrs records procedural (6)) library, a pro-
cedural layer for creating and manipulating record
types and record instances;

• the (rnrs records syntactic (6)) library, a syn-
tactic layer for defining record types and various pro-
cedures to manipulate the record type; and

• the (rnrs records inspection (6)) library, a set
of inspection procedures.

The procedural layer allows programs to construct new
record types and the associated procedures for creating and
manipulating records dynamically. It is particularly use-
ful for writing interpreters that construct host-compatible
record types. It may also serve as a target for expansion
of the syntactic layers.

The syntactic layer provides a basic syntactic interface
whereby a single record definition serves as a shorthand
for the definition of several record creation and manipu-
lation routines: a constructor, a predicate, field accessors,
and field mutators. The layer allows the programmer to
name each of these procedures explicitly, but also provides
shorthands for naming them implicitly through a set of
naming conventions.

Each of these layers permits record types to be extended
via single inheritance, allowing record types to model hier-
archies that occur in applications like algebraic data types
as well as single-inheritance class systems.

Each of the layers also supports generative and nongener-
ative record types.

The inspection procedures allow programs to obtain from
a record instance a descriptor for the type and from there
obtain access to the fields of the record instance. This facil-
ity allows the creation of portable printers and inspectors.
A program may prevent access to a record’s type—and
thereby protect the information stored in the record from
the inspection mechanism—by declaring the type opaque.
Thus, opacity as presented here can be used to enforce ab-
straction barriers.

This section uses the rtd and constructor-descriptor pa-
rameter names for arguments that must be record-type
descriptors and constructor descriptors, respectively (see
section 6.2).

6.1. Mutability and equivalence

The fields of a record type are designated mutable or im-
mutable. Correspondingly, a record type with no mutable
field is called immutable, and all records of that type are
immutable objects. All other record types are mutable, and
so are their records.

For two records obj1 and obj2, the return value of (eqv?
obj1 obj2), is specified as follows:

16 Revised5.94 Scheme Libraries

• If obj1 and obj2 have different record types (i.e., their
record-type descriptors are not eqv?), eqv? returns
#f.

• If obj1 and obj2 are both mutable records of the same
record type, and are the results of two separate calls
to record-type constructors, then eqv? returns #f.

• If obj1 and obj2 are both mutable records of the same
record type, and are the results of a single call to a
record-type constructor, then eqv? returns #t.

• If obj1 and obj2 are both records of the same record
type, where applying the same accessor to both yields
results for which eqv? returns #f.

Rationale: For immutable records, either obj1 and obj2 may

have been subjected to boxing and unboxing since they were

created, and implementors are not required to implement im-

mutable records with locations, serial numbers, or any other

notion of object identity.

6.2. Procedural layer

The procedural layer is provided by the (rnrs records
procedural (6)) library.

(make-record-type-descriptor name procedure
parent uid sealed? opaque? fields)

Returns a record-type descriptor, or rtd, representing a
record type distinct from all built-in types and other record
types.

The name argument must be a symbol. It names the record
type, and is intended purely for informational purposes and
may be used for printing by the underlying Scheme system.

The parent argument must be either #f or an rtd. If it
is an rtd, the returned record type, t , extends the record
type p represented by parent . Each record of type t is
also a record of type p, and all operations applicable to a
record of type p are also applicable to a record of type t ,
except for inspection operations if t is opaque but p is not.
An exception with condition type &assertion is raised if
parent is sealed (see below).

The extension relationship is transitive in the sense that
a type extends its parent’s parent, if any, and so on. A
record type that does not extend another record type is
called a base record type.

The uid argument must be either #f or a symbol. If uid
is a symbol, the record-creation operation is nongenerative
i.e., a new record type is created only if no previous call to
make-record-type-descriptor was made with the uid .
If uid is #f, the record-creation operation is generative,
i.e., a new record type is created even if a previous call to

make-record-type-descriptor was made with the same
arguments.

If make-record-type-descriptor is called twice with the
same uid symbol, the parent arguments in the two calls
must be eqv?, the fields arguments equal?, the sealed?
arguments boolean-equivalent (both #f or both true), and
the opaque? arguments boolean-equivalent. If these con-
ditions are not met, an exception with condition type
&assertion is raised when the second call occurs. If they
are met, the second call returns, without creating a new
record type, the same record-type descriptor (in the sense
of eqv?) as the first call.

Note: Users are encouraged to use symbol names constructed

using the UUID namespace (for example, using the record-type

name as a prefix) for the uid argument.

The sealed? flag must be a boolean. If true, the returned
record type is sealed, i.e., it cannot be extended.

The opaque? flag must be a boolean. If true, the record
type is opaque. If passed an instance of the record type,
record? returns #f. Moreover, if record-rtd (see “In-
spection” below) is called an instance of the record type, an
exception with condition type &assertion is raised. The
record type is also opaque if an opaque parent is supplied.
If opaque? is #f and an opaque parent is not supplied, the
record is not opaque.

The fields argument must be a vector of field specifiers.
Each field specifier must be a list of the form (mutable
name) or a list of the form (immutable name). Each
name must be a symbol and names the corresponding
field of the record type; the names need not be distinct.
A field identified as mutable may be modified, whereas,
when a program attempts to obtain a mutator for a field
identified as immutable, an exception with condition type
&assertion is raised. Where field order is relevant, e.g.,
for record construction and field access, the fields are con-
sidered to be ordered as specified, although no particular
order is required for the actual representation of a record
instance.

The specified fields are added to the parent fields, if any, to
determine the complete set of fields of the returned record
type. If fields is modified after make-record-type has
been called, the effect on the returned rtd is unspecified.

A record type is considered immutable if all fields in its
complete set of fields is immutable, and is mutable other-
wise.

A generative record-type descriptor created by a call to
make-record-type-descriptor is not eqv? to any record-
type descriptor (generative or nongenerative) created by
another call to make-record-type-descriptor. A gen-
erative record-type descriptor is eqv? only to itself, i.e.,
(eqv? rtd1 rtd2) iff (eq? rtd1 rtd2). Also, two nongener-
ative record-type descriptors are eqv? iff they were created

6. Records 17

by calls to make-record-type-descriptor with the same
uid arguments.

Rationale: The record and field names passed to
make-record-type-descriptor and appearing in the syntac-
tic layer are for informational purposes only, e.g., for printers
and debuggers. In particular, the accessor and mutator creation
routines do not use names, but rather field indices, to identify
fields.

Thus, field names are not required to be distinct in the proce-
dural or syntactic layers. This relieves macros and other code
generators from the need to generate distinct names.

The record and field names are used in the syntactic layer for the

generation of accessor and mutator names, and duplicate field

names may lead to accessor and mutator naming conflicts.

Rationale: Sealing a record type can help to enforce abstrac-

tion barriers by preventing extensions that may expose imple-

mentation details of the parent type. Type extensions also make

monomorphic code polymorphic and difficult to change the par-

ent class at a later time, and also prevent effective predictions

of types by a compiler or human reader.

Rationale: Multiple inheritance was considered but omitted

from the records facility, as it raises a number of semantic issues

such as sharing among common parent types.

(record-type-descriptor? obj) procedure

Returns #t if the argument is a record-type descriptor, #f
otherwise.

(make-record-constructor-descriptor rtd procedure
parent-constructor-descriptor protocol)

Returns a record-constructor descriptor (or constructor de-
scriptor for short) that specifies a record constructor (or
constructor for short), that can be used to construct record
values of the type specified by rtd , and which can be ob-
tained via record-constructor. A constructor descriptor
can also be used to create other constructor descriptors for
subtypes of its own record type. Rtd must be a record-type
descriptor. Protocol must be a procedure or #f. If it is #f,
a default protocol procedure is supplied.

If protocol is a procedure, it is called by
record-constructor with a single argument p and
should return a procedure that creates and returns an
instance of the record type using p as described below.
The role of p differs depending on the kind of record type
represented by rtd :

If rtd is a base record type, then
parent-constructor-descriptor must be #f. In this
case, protocol ’s argument p is a procedure that expects
one argument for every field of rtd and returns a record
with the fields of rtd initialized to these arguments. The
procedure returned by protocol should call p once with the
number of arguments it expects and return the resulting
record as shown in the simple example below:

(lambda (p)

(lambda (v1 v2 v3)

(p v1 v2 v3)))

Here, the call to p returns a record whose fields are initial-
ized with the values of v1, v2, and v3. The expression
above is equivalent to (lambda (p) p). Note that the
procedure returned by protocol is otherwise unconstrained;
specifically, it can take any number of arguments.

If rtd is an extension of another record type
parent-rtd , parent-constructor-descriptor must be
a constructor descriptor of parent-rtd or #f. If
parent-constructor-descriptor or protocol is #f, protocol
must also be #f, and a default constructor descriptor is
assumed as described below.

If parent-constructor-descriptor is a constructor descriptor
and protocol is a procedure, then its argument p is a pro-
cedure that accepts the same number of arguments as the
constructor of parent-constructor-descriptor and returns a
procedure new that, when called, constructs the record
itself. The new procedure expects one argument for ev-
ery field of rtd (not including parent fields) and returns a
record with the fields of rtd initialized to these arguments,
and the fields of parent-rtd and its parents initialized as
specified by parent-constructor-descriptor .

The procedure returned by protocol should call p once with
the number of arguments it expects, call the procedure
it returns once with number of arguments it expects and
return the resulting record. A simple protocol in this case
might be written as follows:

(lambda (p)

(lambda (v1 v2 v3 x1 x2 x3 x4)

(let ((new (p v1 v2 v3)))

(new x1 x2 x3 x4))))

This passes arguments v1, v2, v3 to p for
parent-constructor-descriptor and calls new with x1,
. . . , x4 to initialize the fields of rtd itself.

Thus, the constructor descriptors for a record type form
a sequence of protocols exactly parallel to the sequence of
record-type parents. Each constructor descriptor in the
chain determines the field values for the associated record
type. Child record constructors need not know the number
or contents of parent fields, only the number of arguments
required by the parent constructor.

Protocol may be #f, specifying a default value that accepts
one argument for each field of rtd (not including the fields
of its parent type, if any). Specifically, if rtd is a base
type, the default protocol procedure behaves as if it were
(lambda (p) p). If rtd is an extension of another type,
then parent-constructor-descriptor must be either #f or it-
self specify a default constructor. In this case, the default
protocol procedure behaves as if it were:

(lambda (p)

(lambda (v1 ... vj x1 ... xk)

18 Revised5.94 Scheme Libraries

(let ((new (p v1 ... vj)))

(new x1 ... xk))))

The resulting constructor accepts one argument for each
of the record type’s complete set of fields (including those
of the parent record type, the parent’s parent record type,
etc.) and returns a record with the fields initialized to those
arguments, with the field values for the parent coming be-
fore those of the extension in the argument list. (In the
example, j is the complete number of fields of the parent
type, and k is the number of fields of rtd itself.)

Implementation responsibilities: If protocol is a procedure,
the implementation must check the restrictions on it to
the extent performed by applying it as described when the
constructor is called.

Rationale: The constructor-descriptor mechanism is an infra-
structure for creating specialized constructors, rather than just
creating default constructors that accept the initial values of
all the fields as arguments. This infrastructure achieves full
generality while leaving each level of an inheritance hierarchy in
control over its own fields and allowing child record definitions
to be abstracted away from the actual number and contents of
parent fields.

The design allows the initial values of the fields to be specially
computed or to default to constant values. It also allows for
operations to be performed on or with the resulting record, such
as the registration of a record for finalization. Moreover, the
constructor-descriptor mechanism allows the creation of such
initializers in a modular manner, separating the initialization
concerns of the parent types from those of the extensions.

The mechanism described here achieves complete generality

without cluttering the syntactic layer, sacrificing a bit of no-

tational convenience in special cases.

(record-constructor constructor-descriptor) procedure

Calls the protocol of constructor-descriptor (as described
for make-record-constructor-descriptor) and returns
the resulting constructor constructor for records of the
record type associated with constructor-descriptor .

(record-predicate rtd) procedure

Returns a procedure that, given an object obj , returns a
boolean that is #t iff obj is a record of the type represented
by rtd .

(record-accessor rtd k) procedure

K must be a valid field index of rtd . The record-accessor
procedure returns a one-argument procedure that, given a
record of the type represented by rtd , returns the value of
the selected field of that record.

The field selected is the one corresponding the kth ele-
ment (0-based) of the fields argument to the invocation

of make-record-type-descriptor that created rtd . Note
that k cannot be used to specify a field of any type rtd
extends.

If the accessor procedure is given something other than a
record of the type represented by rtd , an exception with
condition type &assertion is raised. Records of the type
represented by rtd include records of extensions of the type
represented by rtd .

(record-mutator rtd k) procedure

K must be a valid field index of rtd . The record-mutator
procedure returns a two-argument procedure that, given
a record r of the type represented by rtd and an ob-
ject obj , stores obj within the field of r specified by k .
The k argument is as in record-accessor. If k speci-
fies an immutable field, an exception with condition type
&assertion is raised. The mutator returns unspecified val-
ues.

(define :point

(make-record-type-descriptor

’point #f

#f #f #f

’#((mutable x) (mutable y))))

(define :point-cd

(make-record-constructor-descriptor :point #f #f))

(define make-point (record-constructor :point-cd))

(define point? (record-predicate :point))

(define point-x (record-accessor :point 0))

(define point-y (record-accessor :point 1))

(define point-x-set! (record-mutator :point 0))

(define point-y-set! (record-mutator :point 1))

(define p1 (make-point 1 2))

(point? p1) =⇒ #t

(point-x p1) =⇒ 1

(point-y p1) =⇒ 2

(point-x-set! p1 5) =⇒ unspecified
(point-x p1) =⇒ 5

(define :point2

(make-record-type-descriptor

’point2 :point

#f #f #f ’#((mutable x) (mutable y))))

(define make-point2

(record-constructor

(make-record-constructor-descriptor :point2

#f #f)))

(define point2? (record-predicate :point2))

(define point2-xx (record-accessor :point2 0))

(define point2-yy (record-accessor :point2 1))

(define p2 (make-point2 1 2 3 4))

(point? p2) =⇒ #t

6. Records 19

(point-x p2) =⇒ 1

(point-y p2) =⇒ 2

(point2-xx p2) =⇒ 3

(point2-yy p2) =⇒ 4

(define :point-cd/abs

(make-record-constructor-descriptor

:point #f

(lambda (new)

(lambda (x y)

(new (abs x) (abs y))))))

(define make-point/abs

(record-constructor :point-cd/abs))

(point-x (make-point/abs -1 -2)

=⇒ 1

(point-y (make-point/abs -1 -2)

=⇒ 2

(define :cpoint

(make-record-type-descriptor

’cpoint :point

#f #f #f

’((mutable rgb))))

(define make-cpoint

(record-constructor

(make-record-constructor-descriptor

:cpoint :point-cd

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))))

(define make-cpoint/abs

(record-constructor

(make-record-constructor-descriptor

:cpoint :point-cd/abs

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))))

(define cpoint-rgb

(record-accessor :cpoint 0))

(define (color->rgb c)

(cons ’rgb c))

(cpoint-rgb (make-cpoint -1 -3 ’red)

=⇒ (rgb . red)

(point-x (make-cpoint -1 -3 ’red))

=⇒ -1

(point-x (make-cpoint/abs -1 -3 ’red))

=⇒ 1

6.3. Syntactic layer

The syntactic layer is provided by the (rnrs records
syntactic (6)) library.

The record-type-defining form define-record-type is a
definition and can appear anywhere any other 〈definition〉
can appear.

(define-record-type 〈name spec〉 〈record clause〉*)
syntax

A define-record-type form defines a record type along
with associated constructor descriptor and constructor,
predicate, field accessors, and field mutators. The
define-record-type form expands into a set of defini-
tions in the environment where define-record-type ap-
pears; hence, it is possible to refer to the bindings (except
for that of the record type itself) recursively.

The 〈name spec〉 specifies the names of the record type,
constructor, and predicate. It must take one of the follow-
ing forms:

(〈record name〉 〈constructor name〉 〈predicate name〉)
〈record name〉

〈Record name〉, 〈constructor name〉, and 〈predicate name〉
must all be identifiers.

〈Record name〉, taken as a symbol, becomes the name
of the record type. Additionally, it is bound by this
definition to an expand-time or run-time description
of the record type for use as parent name in syn-
tactic record-type definitions that extend this defini-
tion. It may also be used as a handle to gain ac-
cess to the underlying record-type descriptor and con-
structor descriptor (see record-type-descriptor and
record-constructor-descriptor below).

〈Constructor name〉 is defined by this definition to be a
constructor for the defined record type, with a protocol
specified by the protocol clause, or, in its absence, using
a default protocol. For details, see the description of the
protocol clause below.

〈Predicate name〉 is defined by this definition to a predicate
for the defined record type.

The second form of 〈name spec〉 is an abbreviation for the
first form, where the name of the constructor is generated
by prefixing the record name with make-, and the predicate
name is generated by adding a question mark (?) to the
end of the record name. For example, if the record name is
frob, the name of the constructor is make-frob, and the
predicate name is frob?.

Each 〈record clause〉 must take one of the following forms;
it is a syntax violation if multiple 〈record clause〉s of the
same kind appear in a define-record-type form.

• (fields 〈field spec〉*)
where each 〈field spec〉 has one of the following forms

20 Revised5.94 Scheme Libraries

(immutable 〈field name〉 〈accessor name〉)
(mutable 〈field name〉

〈accessor name〉 〈mutator name〉)
(immutable 〈field name〉)
(mutable 〈field name〉)
〈field name〉

〈Field name〉, 〈accessor name〉, and 〈mutator name〉
must all be identifiers. The first form de-
clares an immutable field called 〈field name〉, with
the corresponding accessor named 〈accessor name〉.
The second form declares a mutable field called
〈field name〉, with the corresponding accessor named
〈accessor name〉, and with the corresponding mutator
named 〈mutator name〉.
If 〈field spec〉 takes the second or third form, the acces-
sor name is generated by appending the record name
and field name with a hyphen separator, and the mu-
tator name (for a mutable field) is generated by adding
a -set! suffix to the accessor name. For example, if
the record name is frob and the field name is widget,
the accessor name is frob-widget and the mutator
name is frob-widget-set!.

If 〈field spec〉 is just a 〈field name〉 form, it is an ab-
breviation for (immutable 〈field name〉).
The 〈field name〉s become, as symbols, the names of
the fields of the record type being created, in the same
order. They are not used in any other way.

The fields clause may be absent; this is equivalent
to an empty fields clause.

• (parent 〈parent name〉)
Specifies that the record type is to have parent
type 〈parent name〉, where 〈parent name〉 is the
〈record name〉 of a record type previously defined us-
ing define-record-type. The absence of a parent
clause implies a record type with no parent type.

• (protocol 〈expression〉)
〈Expression〉 is evaluated in the same envi-
ronment as the define-record-type form, and
must evaluate to a protocol appropriate for the
record type being defined (see the description of
make-record-constructor-descriptor). The pro-
tocol is used to create a record-constructor descriptor
where, if the record type being defined has a parent,
the parent-type constructor descriptor is the one
associated with the parent type specified in the
parent clause.

If no protocol clause is specified, a construc-
tor descriptor is still created using a default pro-
tocol. The rules for this are the same as for
make-record-constructor-descriptor: the clause
can be absent only if the record type defined has no

parent type, or if the parent definition does not specify
a protocol.

• (sealed #t)
(sealed #f)

If this option is specified with operand #t, the defined
record type is sealed. If this option is specified with
operand #f, or is absent, the defined record type is not
sealed.

• (opaque #t)
(opaque #f)

If this option is specified with operand #t, or if an
opaque parent record type is specified, the defined
record type is opaque. Otherwise, the defined record
type is not opaque.

• (nongenerative 〈uid〉)
(nongenerative)

This specifies that the record type is nongenerative
with uid 〈uid〉, which must be an 〈identifier〉. If
〈uid〉 is absent, a unique uid is generated at macro-
expansion time. If two record-type definitions spec-
ify the same uid , then the implied arguments to
make-record-type-descriptor must be equivalent
as described under make-record-type-descriptor.
If this condition is not met, it is either considered a
syntax violation or an exception with condition type
&assertion is raised. If the condition is met, a single
record type is generated for both definitions.

In the absence of a nongenerative clause, a
new record type is generated every time a
define-record-type form is evaluated:

(let ((f (lambda (x)

(define-record-type r ...)

(if x r? (make-r ...)))))

((f #t) (f #f))) =⇒ #f

All bindings created by define-record-type (for the
record type, the constructor, the predicate, the accessors,
and the mutators) must have names that are pairwise dis-
tinct.

The fields, mutable, immutable, parent, protocol,
sealed, opaque, and nongenerative identifiers are all
exported by the (rnrs records syntactic (6)) library
with level 0. Referring to one of these identifiers out of
place is a syntax violation.

Any definition that takes advantage of implicit naming for
the constructor, predicate, accessor, and mutator names,
can be rewritten trivially to a definition that specifies all
names explicitly. For example, the implicit-naming record
definition:

6. Records 21

(define-record-type frob

(fields (mutable widget))

(protocol

(lambda (c) (c (make-widget n)))))

is equivalent to the following explicit-naming record defi-
nition.

(define-record-type (frob make-frob frob?)

(fields (mutable widget

frob-widget frob-widget-set!))

(protocol

(lambda (c) (c (make-widget n)))))

Also, the implicit-naming record definition:

(define-record-type point (fields x y))

is equivalent to the following explicit-naming record defi-
nition:

(define-record-type (point make-point point?)

(fields

(immutable x point-x)

(immutable y point-y)))

With implicit naming, one can choose to specify just some
of the names explicitly; for example, the following overrides
the choice of accessor and mutator names for the widget
field.

(define-record-type frob

(fields (mutable widget getwid setwid!))

(protocol

(lambda (c) (c (make-widget n)))))

(record-type-descriptor 〈record name〉) syntax

Evaluates to the record-type descriptor associated with the
type specified by 〈record-name〉.
Note that record-type-descriptor works on both
opaque and non-opaque record types.

(record-constructor-descriptor 〈record name〉)
syntax

Evaluates to the record-constructor descriptor associated
with 〈record name〉.

(define-record-type (point make-point point?)

(fields (immutable x point-x)

(mutable y point-y set-point-y!))

(nongenerative

point-4893d957-e00b-11d9-817f-00111175eb9e))

(define-record-type (cpoint make-cpoint cpoint?)

(parent point)

(protocol

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))

(fields

(mutable rgb cpoint-rgb cpoint-rgb-set!)))

(define (color->rgb c)

(cons ’rgb c))

(define p1 (make-point 1 2))

(define p2 (make-cpoint 3 4 ’red))

(point? p1) =⇒ #t

(point? p2) =⇒ #t

(point? (vector)) =⇒ #f

(point? (cons ’a ’b)) =⇒ #f

(cpoint? p1) =⇒ #f

(cpoint? p2) =⇒ #t

(point-x p1) =⇒ 1

(point-y p1) =⇒ 2

(point-x p2) =⇒ 3

(point-y p2) =⇒ 4

(cpoint-rgb p2) =⇒ (rgb . red)

(set-point-y! p1 17)

(point-y p1) =⇒ 17)

(record-rtd p1)

=⇒ (record-type-descriptor point)

(define-record-type (ex1 make-ex1 ex1?)

(protocol (lambda (new) (lambda a (new a))))

(fields (immutable f ex1-f)))

(define ex1-i1 (make-ex1 1 2 3))

(ex1-f ex1-i1) =⇒ (1 2 3)

(define-record-type (ex2 make-ex2 ex2?)

(protocol

(lambda (new) (lambda (a . b) (new a b))))

(fields (immutable a ex2-a)

(immutable b ex2-b)))

(define ex2-i1 (make-ex2 1 2 3))

(ex2-a ex2-i1) =⇒ 1

(ex2-b ex2-i1) =⇒ (2 3)

(define-record-type (unit-vector

make-unit-vector

unit-vector?)

(protocol

(lambda (new)

(lambda (x y z)

(let ((length

(sqrt (+ (* x x) (* y y) (* z z)))))

(new (/ x length)

(/ y length)

(/ z length))))))

(fields (immutable x unit-vector-x)

(immutable y unit-vector-y)

22 Revised5.94 Scheme Libraries

(immutable z unit-vector-z)))

(define *ex3-instance* #f)

(define-record-type ex3

(parent cpoint)

(protocol

(lambda (p)

(lambda (x y t)

(let ((r ((p x y ’red) t)))

(set! *ex3-instance* r)

r))))

(fields

(mutable thickness))

(sealed #t) (opaque #t))

(define ex3-i1 (make-ex3 1 2 17))

(ex3? ex3-i1) =⇒ #t

(cpoint-rgb ex3-i1) =⇒ (rgb . red)

(ex3-thickness ex3-i1) =⇒ 17

(ex3-thickness-set! ex3-i1 18)

(ex3-thickness ex3-i1) =⇒ 18

ex3-instance =⇒ ex3-i1

(record? ex3-i1) =⇒ #f

6.4. Inspection

The inspection layer is provided by the (rnrs records
inspection (6)) library.

A set of procedures are provided for inspecting records
and their record-type descriptors. These procedures are
designed to allow the writing of portable printers and in-
spectors.

On the one hand, record? and record-rtd treat
records of opaque record types as if they were not
records. On the other hand, the inspection proce-
dures that operate on record-type descriptors them-
selves are not affected by opacity. In other words,
opacity controls whether a program can obtain an
rtd from a record. If the program has access to
the original rtd via make-record-type-descriptor or
record-type-descriptor, it can still make use of the in-
spection procedures.

Any of the standard types mentioned in this report may or
may not be implemented as an opaque record type. Conse-
quently, record?, when applied to an object of one of these
types, may return #t. In this case, inspection is possible
for these objects.

(record? obj) procedure

Returns #t if obj is a record, and its record type is not
opaque. Returns #f otherwise.

(record-rtd record) procedure

Returns the rtd representing the type of record if the type
is not opaque. The rtd of the most precise type is returned;
that is, the type t such that record is of type t but not of
any type that extends t . If the type is opaque, an exception
is raised with condition type &assertion.

(record-type-name rtd) procedure

Returns the name of the record-type descriptor rtd .

(record-type-parent rtd) procedure

Returns the parent of the record-type descriptor rtd , or #f
if it has none.

(record-type-uid rtd) procedure

Returns the uid of the record-type descriptor rtd, or #f if
it has none. (An implementation may assign a generated
uid to a record type even if the type is generative, so the
return of a uid does not necessarily imply that the type is
nongenerative.)

(record-type-generative? rtd) procedure

Returns #t if rtd is generative, and #f if not.

(record-type-sealed? rtd) procedure

Returns a boolean value indicating whether the record-type
descriptor is sealed.

(record-type-opaque? rtd) procedure

Returns a boolean value indicating whether the record-type
descriptor is opaque.

(record-type-field-names rtd) procedure

Returns a vector of symbols naming the fields of the
type represented by rtd (not including the fields of par-
ent types) where the fields are ordered as described un-
der make-record-type-descriptor. The returned vector
may be immutable. If the returned vector is modified, the
effect on rtd is unspecified.

(record-field-mutable? rtd k) procedure

Returns a boolean value indicating whether the field spec-
ified by k of the type represented by rtd is mutable, where
k is as in record-accessor.

7. Exceptions and conditions

Scheme allows programs to deal with exceptional situations
using two cooperating facilities: The exception system for

7. Exceptions and conditions 23

raising and handling exceptional situations, and the condi-
tion system for describing these situations.

The exception system allows the program, when it detects
an exceptional situation, to pass control to an exception
handler, and to dynamically establish such exception han-
dlers. Exception handlers are always invoked with an ob-
ject describing the exceptional situation. Scheme’s con-
dition system provides a standardized taxonomy of such
descriptive objects, as well as a facility for extending the
taxonomy.

7.1. Exceptions

This section describes Scheme’s exception-handling and
exception-raising constructs provided by the (rnrs
exceptions (6)) library.

Note: This specification follows SRFI 34 [8].

Exception handlers are one-argument procedures that de-
termine the action the program takes when an exceptional
situation is signalled. The system implicitly maintains a
current exception handler.

The program raises an exception by invoking the current
exception handler, passing it an object encapsulating in-
formation about the exception. Any procedure accepting
one argument may serve as an exception handler and any
object may be used to represent an exception.

The system maintains the current exception handler as
part of the dynamic environment of the program; see report
section 4.10.

When a program begins its execution, the current excep-
tion handler is expected to handle all &serious conditions
by interrupting execution, reporting that an exception has
been raised, and displaying information about the condi-
tion object that was provided. The handler may then exit,
or may provide a choice of other options. Moreover, the
exception handler is expected to return when passed any
other non-&serious condition. Interpretation of these ex-
pectations necessarily depends upon the nature of the sys-
tem in which programs are executed, but the intent is that
users perceive the raising of an exception as a controlled
escape from the situation that raised the exception, not as
a crash.

(with-exception-handler handler thunk) procedure

Handler must be a procedure and should accept one ar-
gument. Thunk must be a procedure that accepts zero
arguments. The with-exception-handler procedure re-
turns the results of invoking thunk . Handler is installed as
the current exception handler for the dynamic extent (as
determined by dynamic-wind) of the invocation of thunk .

Implementation responsibilities: The implementation must
check the restrictions on handler to the extent performed
by applying it as described when it is called as a result of
a call to raise or raise-continuable.

(guard (〈variable〉 〈cond clause1〉 〈cond clause2〉 . . .) 〈body〉)
syntax

Syntax: Each 〈cond clause〉 is as in the specification of
cond. (See report section 9.5.5.)

Semantics: Evaluating a guard form evaluates 〈body〉
with an exception handler that binds the raised object to
〈variable〉 and within the scope of that binding evaluates
the clauses as if they were the clauses of a cond expression.
That implicit cond expression is evaluated with the contin-
uation and dynamic environment of the guard expression.
If every 〈cond clause〉’s 〈test〉 evaluates to #f and there is
no else clause, then raise is re-invoked on the raised ob-
ject within the dynamic environment of the original call to
raise except that the current exception handler is that of
the guard expression.

The => and else identifiers are exported from the (rnrs
exceptions (6)) library with level 0, and are the same as
in the (rnrs base (6)) library.

(raise obj) procedure

Raises a non-continuable exception by invoking the current
exception handler on obj . The handler is called with a
continuation whose dynamic environment is that of the call
to raise, except that the current exception handler is the
one that was in place when the handler being called was
installed. When the handler returns, a non-continuable
exception with condition type &non-continuable is raised
in the same dynamic environment as the handler.

(raise-continuable obj) procedure

Raises a continuable exception by invoking the current ex-
ception handler on obj . The handler is called with a con-
tinuation that is equivalent to the continuation of the call
to raise-continuable, with these two exceptions: (1) the
current exception handler is the one that was in place when
the handler being called was installed, and (2) if the han-
dler being called returns, then it will again become the
current exception handler. If the handler returns, the val-
ues it returns become the values returned by the call to
raise-continuable.

(guard (con

((error? con)

(if (message-condition? con)

(display (condition-message con))

(display "an error has occurred"))

’error)

((violation? con)

24 Revised5.94 Scheme Libraries

(if (message-condition? con)

(display (condition-message con))

(display "the program has a bug"))

’violation))

(raise

(condition

(&error)

(&message (message "I am an error")))))

prints: I am an error

=⇒ error

(guard (con

((error? con)

(if (message-condition? con)

(display (condition-message con))

(display "an error has occurred"))

’error))

(raise

(condition

(&violation)

(&message (message "I am an error")))))

=⇒ &violation exception

(guard (con

((error? con)

(display "error opening file")

#f))

(call-with-input-file "foo.scm" read))

prints: error opening file

=⇒ #f

(with-exception-handler

(lambda (con)

(cond

((not (warning? con))

(raise con))

((message-condition? con)

(display (condition-message con)))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable

(condition

(&warning)

(&message

(message "should be a number"))))

23)))

prints: should be a number

=⇒ 65

7.2. Conditions

The section describes Scheme’s (rnrs conditions (6))
library for creating and inspecting condition types and val-
ues. A condition value encapsulates information about an
exceptional situation, or exception. Scheme also defines a
number of basic condition types.

Scheme conditions provides two mechanisms to enable
communication about exceptional situation: subtyping
among condition types allows handling code to determine
the general nature of an exception even though it does not
anticipate its exact nature, and compound conditions allow
an exceptional situation to be described in multiple ways.

Rationale: Conditions are values that communicate informa-

tion about exceptional situations between parts of a program.

Code that detects an exception may be in a different part of the

program than the code that handles it. In fact, the former may

have been written independently from the latter. Consequently,

to facilitate effective handling of exceptions, conditions should

communicate as much information with as much accuracy as

feasible, and still allow effective handling by code that did not

precisely anticipate the nature of the exception that occurred.

7.2.1. Condition objects

Conceptually, there are two different kinds of condition ob-
jects: simple conditions and compound conditions. An ob-
ject that is either a simple condition or a compound con-
dition is simply a condition. Compound conditions form
a type disjoint from the base types described in report
section 9.2. A simple condition describes a single aspect
of an exceptional situation. A compound condition rep-
resents multiple aspects of an exceptional situation as a
list of simple conditions, its components. Most of the op-
erations described in this section treat a simple condition
identically to a compound condition consisting of only the
simple condition. Thus, a simple condition is its own sole
component. For a subtype t of &condition, a condition of
type t is either a record of type t or a compound condition
containing a component of type t .

&condition condition type

Simple conditions are records of subtypes of the
&condition record type. The &condition type is neither
sealed nor opaque.

(condition condition1 . . .) procedure

The condition procedure returns a condition object with
the components of the conditions as its components, in
the same order, i.e., with the components of condition1

appearing first in the same order as in condition1, then with
the components of condition2, and so on. The returned
condition is compound if the total number of components
is zero or greater than one. Otherwise, it may be compound
or simple.

(simple-conditions condition) procedure

The simple-conditions procedure returns a list of the
components of condition, in the same order as they ap-
peared in the construction of condition. The returned list

7. Exceptions and conditions 25

is immutable. If the returned list is modified, the effect on
condition is unspecified.

Note: Because condition decomposes its arguments into sim-

ple conditions, simple-conditions always returns a “flattened”

list of simple conditions.

(condition? obj) procedure

Returns #t if obj is a (simple or compound) condition,
otherwise returns #f.

(condition-predicate rtd) procedure

Rtd must be a record-type descriptor of a subtype of
&condition. The condition-predicate procedure re-
turns a procedure that takes one argument. This proce-
dure returns #t if its argument is a condition of the con-
dition type represented by rtd , i.e., if it is either a simple
condition of that record type (or one of its subtypes) or a
compound conditition with such a simple condition as one
of its components.

(condition-accessor rtd proc) procedure

Rtd must be a record-type descriptor of a subtype of
&condition. Proc should accept one argument, a record
of the record type of rtd . The condition-accessor pro-
cedure returns a procedure that accepts a single argument,
which must be a condition of the type represented by rtd .
This procedure extracts the first component of the condi-
tion of the type represented by rtd , and returns the result
of applying proc to that component.

(define-record-type (&cond1 make-cond1 real-cond1?)

(parent &condition)

(fields

(immutable x real-cond1-x)))

(define cond1?

(condition-predicate

(record-type-descriptor &cond1)))

(define cond1-x

(condition-accessor

(record-type-descriptor &cond1)

real-cond1-x))

(define foo (make-cond1 ’foo))

(condition? foo) =⇒ #t

(cond1? foo) =⇒ #t

(cond1-x foo) =⇒ foo

(define-record-type (&cond2 make-cond2 real-cond2?)

(parent &condition)

(fields

(immutable y real-cond2-y)))

(define cond2?

(condition-predicate

(record-type-descriptor &cond2)))

(define cond2-y

(condition-accessor

(record-type-descriptor &cond2)

real-cond2-y))

(define bar (make-cond2 ’bar))

(condition? (condition foo bar))

=⇒ #t

(cond1? (condition foo bar))

=⇒ #t

(cond2? (condition foo bar))

=⇒ #t

(cond1? (condition foo)) =⇒ #t

(real-cond1? (condition foo))

=⇒ unspecified
(real-cond1? (condition foo bar))

=⇒ #f

(cond1-x (condition foo bar)

=⇒ foo

(cond2-y (condition foo bar)

=⇒ bar

(equal? (simple-conditions (condition foo bar))

(list foo bar)) =⇒ #t

(equal? (simple-conditions

(condition foo (condition bar)))

(list foo bar)) =⇒ #t

(define-condition-type 〈condition-type〉 syntax
〈supertype〉

〈constructor〉 〈predicate〉
〈field-spec1〉 . . .)

Syntax: 〈Condition-type〉, 〈supertypes〉, 〈constructor〉, and
〈predicate〉 must all be identifiers. Each 〈field-spec〉 must
be of the form

(〈field〉 〈accessor〉)

where both 〈field〉 and 〈accessor〉 must be identifiers.

Semantics: The define-condition-type form ex-
pands into a record-type definition for a record type
&condition-type (see section 6.3). The record type will
be non-opaque, non-sealed, and its fields will be immutable.
It will have 〈supertype〉 has its parent type. The remaining
identifiers will be bound as follows:

• 〈Constructor〉 is bound to a default constructor for
the type (see section 6.2): It accepts one argument for
each of the record type’s complete set of fields (includ-
ing parent types, with the fields of the parent coming
before those of the extension in the arguments) and
returns a condition object initialized to those argu-
ments.

26 Revised5.94 Scheme Libraries

• 〈Predicate〉 is bound to a predicate that identifies con-
ditions of type 〈condition-type〉 or any of its subtypes.

• Each 〈accessor〉 is bound to a procedure that ex-
tracts the corresponding field from a condition of type
〈condition-type〉.

(define-condition-type &c &condition

make-c c?

(x c-x))

(define-condition-type &c1 &c

make-c1 c1?

(a c1-a))

(define-condition-type &c2 &c

make-c2 c2?

(b c2-b))

(define v1 (make-c1 "V1" "a1"))

(c? v1) =⇒ #t

(c1? v1) =⇒ #t

(c2? v1) =⇒ #f

(c-x v1) =⇒ "V1"

(c1-a v1) =⇒ "a1"

(define v2 (make-c2 "V2" "b2"))

(c? v2) =⇒ #t

(c1? v2) =⇒ #f

(c2? v2) =⇒ #t

(c-x v2) =⇒ "V2"

(c2-b v2) =⇒ "b2"

(define v3 (condition

(make-c1 "V3/1" "a3")

(make-c2 "V3/2" "b3")))

(c? v3) =⇒ #t

(c1? v3) =⇒ #t

(c2? v3) =⇒ #t

(c-x v3) =⇒ "V3/1"

(c1-a v3) =⇒ "a3"

(c2-b v3) =⇒ "b3"

(define v4 (condition v1 v2))

(c? v4) =⇒ #t

(c1? v4) =⇒ #t

(c2? v4) =⇒ #t

(c-x v4) =⇒ "V1"

(c1-a v4) =⇒ "a1"

(c2-b v4) =⇒ "b2"

(define v5 (condition v2 v3))

(c? v5) =⇒ #t

(c1? v5) =⇒ #t

(c2? v5) =⇒ #t

(c-x v5) =⇒ "V2"

(c1-a v5) =⇒ "a3"

(c2-b v5) =⇒ "b2"

7.3. Standard condition types

&message condition type
(make-message-condition message) procedure
(message-condition? obj) procedure
(condition-message condition) procedure

This condition type could be defined by

(define-condition-type &message &condition

make-message-condition message-condition?

(message condition-message))

It carries a message further describing the nature of the
condition to humans.

&warning condition type
(make-warning) procedure
(warning? obj) procedure

This condition type could be defined by

(define-condition-type &warning &condition

make-warning warning?)

This type describes conditions that do not, in principle,
prohibit immediate continued execution of the program,
but may interfere with the program’s execution later.

&serious condition type
(make-serious-condition) procedure
(serious-condition? obj) procedure

This condition type could be defined by

(define-condition-type &serious &condition

make-serious-condition serious-condition?)

This type describes conditions serious enough that they
cannot safely be ignored. This condition type is primarily
intended as a supertype of other condition types.

&error condition type
(make-error) procedure
(error? obj) procedure

This condition type could be defined by

(define-condition-type &error &serious

make-error error?)

This type describes errors, typically caused by something
that has gone wrong in the interaction of the program with
the external world or the user.

&violation condition type
(make-violation) procedure
(violation? obj) procedure

This condition type could be defined by

7. Exceptions and conditions 27

(define-condition-type &violation &serious

make-violation violation?)

This type describes violations of the language standard or a
library standard, typically caused by a programming error.

&non-continuable condition type
(make-non-continuable-violation) procedure
(non-continuable-violation? obj) procedure

This condition type could be defined by

(define-condition-type &non-continuable &violation

make-non-continuable-violation

non-continuable-violation?)

This type indicates that an exception handler invoked via
raise has returned.

&implementation-restriction condition type
(make-implementation-restriction-violation)

procedure
(implementation-restriction-violation? obj)

procedure

This condition type could be defined by

(define-condition-type &implementation-restriction

&violation

make-implementation-restriction-violation

implementation-restriction-violation?)

This type describes a violation of an implementation re-
striction allowed by the specification, such as the absence of
representations for NaNs and infinities. (See section 11.2.)

&lexical condition type
(make-lexical-violation) procedure
(lexical-violation? obj) procedure

This condition type could be defined by

(define-condition-type &lexical &violation

make-lexical-violation lexical-violation?)

This type describes syntax violations at the level of the
read syntax.

&syntax condition type
(make-syntax-violation form subform) procedure
(syntax-violation? obj) procedure
(syntax-violation-form condition) procedure
(syntax-violation-subform condition) procedure

This condition type could be defined by

(define-condition-type &syntax &violation

make-syntax-violation syntax-violation?

(form syntax-violation-form)

(subform syntax-violation-subform))

This type describes syntax violations. The form field con-
tains the erroneous syntax object or a datum representing
the code of the erroneous form. The subform field may
contain an optional syntax object or datum within the er-
roneous form that more precisely locates the violation. It
can be #f to indicate the absence of more precise informa-
tion.

&undefined condition type
(make-undefined-violation) procedure
(undefined-violation? obj) procedure

This condition type could be defined by

(define-condition-type &undefined &violation

make-undefined-violation undefined-violation?)

This type describes unbound identifiers in the program.

&assertion condition type
(make-assertion-violation obj) procedure
(assertion-violation? obj) procedure

This condition type could be defined by

(define-condition-type &assertion &violation

make-assertion-violation assertion-violation?)

This type describes an invalid call to a procedure, either
passing an invalid number of arguments, or passing an ar-
gument of the wrong type.

&irritants condition type
(make-irritants-condition irritants) procedure
(irritants-condition? obj) procedure
(condition-irritants condition) procedure

This condition type could be defined by

(define-condition-type &irritants &condition

make-irritants-condition irritants-condition?

(irritants condition-irritants))

The irritants field should contain a list of objects. This
condition provides additional information about a condi-
tion, typically the argument list of a procedure that de-
tected an exception. Conditions of this type are created
by the error and assertion-violation procedures of re-
port section 9.15.

&who condition type
(make-who-condition who) procedure
(who-condition? obj) procedure
(condition-who condition) procedure

This condition type could be defined by

(define-condition-type &who &condition

make-who-condition who-condition?

(who condition-who))

28 Revised5.94 Scheme Libraries

The who field should contain a symbol or string identifying
the entity reporting the exception. Conditions of this type
are created by the error and assertion-violation pro-
cedures (report section 9.15), and the syntax-violation
procedure (section 12.9).

8. I/O

This chapter describes Scheme’s libraries for performing
input and output:

• The (rnrs i/o ports (6)) library (section 8.2) is an
I/O layer for conventional, imperative buffered input
and output with mixed text and binary data.

• The (rnrs i/o simple (6)) library (section 8.3) is a
convenience library atop the (rnrs i/o ports (6))
library for textual I/O, compatible with the tradi-
tional Scheme I/O procedures [7].

Section 8.1 defines a condition-type hierarchy that is ex-
ported by both the (rnrs i/o ports (6)) and (rnrs
i/o simple (6)) libraries.

8.1. Condition types

The procedures described in this chapter, when they detect
an exceptional situation that arises from an “I/O errors”,
raise an exception with condition type &i/o.

The condition types and corresponding predicates and ac-
cessors are exported by both the (rnrs i/o ports (6))
and (rnrs i/o simple (6)) libraries. They are also
exported by the (rnrs files (6)) library described in
chapter 9.

&i/o condition type
(make-i/o-error) procedure
(i/o-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o &error

make-i/o-error i/o-error?)

This is a supertype for a set of more specific I/O errors.

&i/o-read condition type
(make-i/o-read-error) procedure
(i/o-read-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-read &i/o

make-i/o-read-error i/o-read-error?)

This condition type describes read errors that occurred
during an I/O operation.

&i/o-write condition type
(make-i/o-write-error) procedure
(i/o-write-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-write &i/o

make-i/o-write-error i/o-write-error?)

This condition type describes write errors that occurred
during an I/O operation.

&i/o-invalid-position condition type
(make-i/o-invalid-position-error) procedure
(i/o-invalid-position-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-invalid-position &i/o

make-i/o-invalid-position-error

i/o-invalid-position-error?

(position i/o-error-position))

This condition type describes attempts to set the file posi-
tion to an invalid position. The value of the position field
is the file position that the program intended to set. This
condition describes a range error, but not an assertion vi-
olation.

&i/o-filename condition type
(make-i/o-filename-error filename) procedure
(i/o-filename-error? obj) procedure
(i/o-error-filename condition) procedure

This condition type could be defined by

(define-condition-type &i/o-filename &i/o

make-i/o-filename-error i/o-filename-error?

(filename i/o-error-filename))

This condition type describes an I/O error that occurred
during an operation on a named file. Condition objects
belonging to this type must specify a file name in the
filename field.

&i/o-file-protection condition type
(make-i/o-file-protection-error filename)

procedure
(i/o-file-protection-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-protection

&i/o-filename

make-i/o-file-protection-error

i/o-file-protection-error?)

8. I/O 29

A condition of this type specifies that an operation tried
to operate on a named file with insufficient access rights.

&i/o-file-is-read-only condition type
(make-i/o-file-is-read-only-error filename)

procedure
(i/o-file-is-read-only-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-is-read-only

&i/o-file-protection

make-i/o-file-is-read-only-error

i/o-file-is-read-only-error?)

A condition of this type specifies that an operation tried
to operate on a named read-only file under the assumption
that it is writeable.

&i/o-file-already-exists condition type
(make-i/o-file-already-exists-error filename)

procedure
(i/o-file-already-exists-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-already-exists

&i/o-filename

make-i/o-file-already-exists-error

i/o-file-already-exists-error?)

A condition of this type specifies that an operation tried
to operate on an existing named file under the assumption
that it did not exist.

&i/o-file-exists-not condition type
(make-i/o-exists-not-error filename) procedure
(i/o-exists-not-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-exists-not

&i/o-filename

make-i/o-exists-not-error

i/o-file-exists-not-error?)

A condition of this type specifies that an operation tried to
operate on an non-existent named file under the assump-
tion that it existed.

&i/o-port condition type
(make-i/o-port-error port) procedure
(i/o-port-error? obj) procedure
(i/o-error-port condition) procedure

This condition type could be defined by

(define-condition-type &i/o-port &i/o

make-i/o-port-error i/o-port-error?

(port i/o-error-port))

This condition type specifies the port with which an I/O
error is associated. Except for condition objects provided
for encoding and decoding errors, conditions raised by pro-
cedures may include an &i/o-port-error condition, but
are not required to do so.

8.2. Port I/O

The (rnrs i/o ports (6)) library defines an I/O layer
for conventional, imperative buffered input and output. A
port represents a buffered access object for a data sink or
source or both simultaneously. The library allows ports to
be created from arbitrary data sources and sinks.

The (rnrs i/o ports (6)) library distinguishes between
input ports and output ports. An input port is a source
for data, whereas an output port is a sink for data. A port
may be both an input port and an output port; such a port
typically provides simultaneous read and write access to a
file or other data.

The (rnrs i/o ports (6)) library also distinguishes be-
tween binary ports, which are sources or sinks for uninter-
preted bytes, and textual ports, which are sources or sinks
for characters and strings.

This section uses input-port , output-port , binary-port ,
textual-port , binary-input-port , textual-input-port ,
binary-output-port , textual-output-port , and port as
parameter names for arguments that must be input
ports (or combined input/output ports), output ports
(or combined input/output ports), binary ports, textual
ports, binary input ports, textual input ports, binary
output ports, textual output ports, or any kind of port,
respectively.

8.2.1. File names

Some of the procedures described in this chapter accept a
file name as an argument. Valid values for such a file name
include strings that name a file using the native notation of
filesystem paths on an implementation’s underlying oper-
ating system, and may include implementation-dependent
values as well.

Rationale: Implementation-dependent file names may provide

a more abstract and/or more general representation. Indeed,

most operating systems do not use strings for representing file

names, but rather byte or word sequences. Furthermore the

string notation is not fully portable across operating systems,

and is difficult to manipulate.

A filename parameter name means that the corresponding
argument must be a file name.

30 Revised5.94 Scheme Libraries

8.2.2. File options

When opening a file, the various procedures in this library
accept a file-options object that encapsulates flags to
specify how the file is to be opened. A file-options
object is an enum-set (see chapter 14) over the symbols
constituting valid file options. A file-options parameter
name means that the corresponding argument must be a
file-options object.

(file-options 〈file-options name〉 . . .) syntax

Each 〈file-options name〉 must be an 〈identifier〉. The
file-options syntax returns a file-options object that en-
capsulates the specified options.

When supplied to an operation that opens a file for output,
the file-options object returned by (file-options) spec-
ifies that the file is created if it does not exist and an ex-
ception with condition type &i/o-file-already-exists
is raised if it does exist. The following standard options
can be included to modify the default behavior.

• no-create If the file does not already exist, it is
not created; instead, an exception with condition
type &i/o-file-exists-not is raised. If the file
already exists, the exception with condition type
&i/o-file-already-exists is not raised and the file
is truncated to zero length.

• no-fail If the file already exists, the exception with
condition type &i/o-file-already-exists is not
raised, even if no-create is not included, and the file
is truncated to zero length.

• no-truncate If the file already exists and the excep-
tion with condition type &i/o-file-already-exists
has been inhibited by inclusion of no-create or
no-fail, the file is not truncated, but the port’s cur-
rent position is still set to the beginning of the file.

These options have no effect when a file is opened only
for input. 〈Identifiers〉s other than those listed above may
be used as 〈file-options name〉s; they have implementation-
specific meaning, if any.

Rationale: The flags specified above represent only a com-

mon subset of meaningful options on popular platforms. The

file-options form does not restrict the 〈file-options name〉s, so

implementations can extend the file options by platform-specific

flags.

8.2.3. Buffer modes

Each port has an associated buffer mode. For an output
port, the buffer mode defines when an output operation
flushes the buffer associated with the output port. For an

input port, the buffer mode defines how much data will be
read to satisfy read operations. The possible buffer modes
are the symbols none for no buffering, line for flushing
upon line endings or reading until line endings, and block
for arbitrary buffering. This section uses the parameter
name buffer-mode for arguments that must be buffer-mode
symbols.

If two ports are connected to the same mutable source,
both ports are unbuffered, and reading a byte or character
from that shared source via one of the two ports would
change the bytes or characters seen via the other port, a
lookahead operation on one port will render the peeked
byte or character inaccessible via the other port, while a
subsequent read operation on the peeked port will see the
peeked byte or character even though the port is otherwise
unbuffered.

In other words, the semantics of buffering is defined in
terms of side effects on shared mutable sources, and a
lookahead operation has the same side effect on the shared
source as a read operation.

(buffer-mode 〈name〉) syntax

〈Name〉 must be one of the 〈identifier〉s none, line, or
block. The result is the corresponding symbol, denoting
the associated buffer mode.

It is a syntax violation if 〈name〉 is not one of the valid
identifiers.

(buffer-mode? obj) procedure

Returns #t if the argument is a valid buffer-mode symbol,
and returns #f otherwise.

8.2.4. Transcoders

Several different Unicode encoding schemes describe stan-
dard ways to encode characters and strings as byte se-
quences and to decode those sequences [11]. Within this
document, a codec is an immutable Scheme object that
represents a Unicode or similar encoding scheme.

An end-of-line style is a symbol that, if it is not none,
describes how a textual port transcodes representations of
line endings.

A transcoder is an immutable Scheme object that combines
a codec with an end-of-line style and a method for handling
decoding errors. Each transcoder represents some specific
bidirectional (but not necessarily lossless), possibly state-
ful translation between byte sequences and Unicode char-
acters and strings. Every transcoder can operate in the
input direction (bytes to characters) or in the output di-
rection (characters to bytes), but the composition of those
directions need not be identity (and often is not). The com-
position of two transcoders is not defined. A transcoder

8. I/O 31

parameter name means that the corresponding argument
must be a transcoder.

A binary port is a port that does not have an associated
transcoder and does not support textual I/O. A textual
port is a port with an associated transcoder.

(latin-1-codec) procedure
(utf-8-codec) procedure
(utf-16-codec) procedure

These are predefined codecs for the ISO 8859-1, UTF-8,
and UTF-16 encoding schemes [11].

A call to any of these procedures returns a value that is
equal in the sense of eqv? to the result of any other call to
the same procedure.

(eol-style name) syntax

If name is one of the 〈identifier〉s lf, cr, crlf, nel, crnel,
ls, or none, the form evaluates to the corresponding sym-
bol. If name is not one of these identifiers, the effect and
result are implementation-dependent; in particular, the re-
sult may be an eol-style symbol acceptable as an eol-mode
argument to make-transcoder. Otherwise, an exception
is raised.

All eol-style symbols except none describe a specific line-
ending encoding:

lf 〈linefeed〉
cr 〈carriage return〉
crlf 〈carriage return〉 〈linefeed〉
nel 〈next line〉
crnel 〈carriage return〉 〈next line〉
ls 〈line separator〉

For a textual port whose transcoder has an eol-style sym-
bol none, no conversion occurs. For a textual input port,
any eol-style symbol other than none means that all of the
above line-ending encodings are recognized and are trans-
lated into a single linefeed. For a textual output port,
none and lf are equivalent. Linefeed characters are en-
coded according to the specified eol-style symbol, and all
other characters that participate in possible line endings
are encoded as is.

Rationale: The set is not closed because end-of-line styles other

than those listed might become commonplace in the future.

(native-eol-style) procedure

Returns the default end-of-line style of the underlying plat-
form, e.g., lf on Unix and crlf on Windows.

&i/o-decoding condition type
(make-i/o-decoding-error port) procedure
(i/o-decoding-error? obj) procedure

(i/o-decoding-error-transcoder condition)
procedure

This condition type could be defined by

(define-condition-type &i/o-decoding &i/o-port

make-i/o-decoding-error i/o-decoding-error?

(transcoder i/o-decoding-error-transcoder))

An exception with this type is raised when one of the
operations for textual input from a port encounters a se-
quence of bytes that cannot be translated into a character
or string by the input direction of the port’s transcoder.
The transcoder field contains the port’s transcoder.

Exceptions of this type raised by the operations described
in this section are continuable. When such an exception is
raised, the port’s position is at the beginning of the invalid
encoding. If the exception handler returns, it should return
a character or string representing the decoded text starting
at the port’s current position, and the exception handler
must update the port’s position to point past the error.

Implementation responsibilities: The implementation must
check that the exception handler returns a character or a
string only if it actually returns.

&i/o-encoding condition type
(make-i/o-encoding-error port char transcoder)

procedure
(i/o-encoding-error? obj) procedure
(i/o-encoding-error-char condition) procedure
(i/o-encoding-error-transcoder condition)

procedure

This condition type could be defined by

(define-condition-type &i/o-encoding &i/o-port

make-i/o-encoding-error i/o-encoding-error?

(char i/o-encoding-error-char)

(transcoder i/o-encoding-error-transcoder))

An exception with this type is raised when one of the op-
erations for textual output to a port encounters a char-
acter that cannot be translated into bytes by the output
direction of the port’s transcoder. The char field of the
condition object contains the character that could not be
encoded, and the transcoder field contains the transcoder
associated with the port.

Exceptions of this type raised by the operations described
in this section are continuable. The handler, if it returns,
should output to the port an appropriate encoding for the
character that caused the error. The operation that raised
the exception continues after that character.

Implementation responsibilities: The implementation is
not required to check whether the handler has output an
encoding.

32 Revised5.94 Scheme Libraries

(error-handling-mode name) syntax

If name is one of the 〈identifier〉s ignore, raise, or
replace, the result is the corresponding symbol. If
name is not one of these identifiers, effect and result are
implementation-dependent: The result may be an error-
handling-mode symbol acceptable as a handling-mode ar-
gument to make-transcoder. If it is not acceptable as a
handling-mode argument to make-transcoder, an excep-
tion is raised.

Rationale: Implementations may support error-handling

modes other than those listed.

The error-handling mode of a transcoder specifies the be-
havior of textual I/O operations in the presence of encoding
or decoding errors.

If a textual input operation encounters an invalid or in-
complete character encoding, and the error-handling mode
is ignore, an appropriate number of bytes of the invalid
encoding are ignored and decoding continues with the fol-
lowing bytes. If the error-handling mode is replace, the
replacement character U+FFFD is injected into the data
stream, an appropriate number of bytes are ignored, and
decoding continues with the following bytes. If the error-
handling mode is raise, a continuable exception with con-
dition type &i/o-decoding is raised; see the description
of &i/o-decoding for details on how to handle such an
exception.

If a textual output operation encounters a character it can-
not encode, and the error-handling mode is ignore, the
character is ignored and encoding continues with the next
character. If the error-handling mode is replace, a codec-
specific replacement character is emitted by the transcoder,
and encoding continues with the next character. The re-
placement character is U+FFFD for transcoders whose
codec is one of the Unicode encodings, but is the ? charac-
ter for the Latin-1 encoding. If the error-handling mode is
raise, an exception with condition type &i/o-encoding
is raised; see the description of &i/o-decoding for details
on how to handle such an exception.

(make-transcoder codec) procedure
(make-transcoder codec eol-style) procedure
(make-transcoder codec eol-style handling-mode)

procedure

Codec must be a codec; eol-style, if present, an eol-style
symbol; and handling-mode, if present, an error-handling-
mode symbol. Eol-style may be omitted, in which case it
defaults to the native end-of-line style of the underlying
platform. Handling-mode may be omitted, in which case
it defaults to raise. The result is a transcoder with the
behavior specified by its arguments.

(native-transcoder) procedure

Returns an implementation-dependent transcoder that

represents a possibly locale-dependent “native” transcod-
ing.

(transcoder-codec transcoder) procedure
(transcoder-eol-style transcoder) procedure
(transcoder-error-handling-mode transcoder)

procedure

These are accessors for transcoder objects; when applied
to a transcoder returned by make-transcoder, they re-
turn the codec, eol-style, and handling-mode arguments,
respectively.

(bytevector->string bytevector transcoder) procedure

Returns the string that results from transcoding the
bytevector according to the input direction of the
transcoder.

(string->bytevector string transcoder) procedure

Returns the bytevector that results from transcoding the
string according to the output direction of the transcoder.

8.2.5. End of file object

The end of file object is returned by various I/O procedures
when they reach end of file.

(eof-object) procedure

Returns the end of file object.

(eqv? (eof-object) (eof-object))

=⇒ #t

(eq? (eof-object) (eof-object))

=⇒ #t

Note: The end of file object is not a datum value, and thus

has no external representation.

(eof-object? obj) procedure

Returns #t if obj is the end of file object, #f otherwise.

8.2.6. Input and output ports

The operations described in this section are common to
input and output ports, both binary and textual. A port
may also have an associated position that specifies a par-
ticular place within its data sink or source, and may also
provide operations for inspecting and setting that place.

(port? obj) procedure

Returns #t if the argument is a port, and returns #f oth-
erwise.

8. I/O 33

(port-transcoder port) procedure

Returns the transcoder associated with port if port is tex-
tual, and returns #f if port is binary.

(textual-port? port) procedure
(binary-port? port) procedure

The textual-port procedure returns #t if port is textual,
and returns #f otherwise. The binary-port procedure
returns #t if port is textual, and returns #f otherwise.

(transcoded-port binary-port transcoder) procedure

The transcoded-port procedure returns a new textual
port with the specified transcoder . Otherwise the new
textual port’s state is largely the same as that of the
binary-port . If the binary-port is an input port, the new
textual port will be an input port and will transcode the
bytes that have not yet been read from the binary-port .
If the binary-port is an output port, the new textual port
will be an output port and will transcode output characters
into bytes that are written to the byte sink represented by
the binary-port .

As a side effect, however, transcoded-port closes
binary-port in a special way that allows the new textual
port to continue to use the byte source or sink represented
by the binary-port , even though the binary-port itself is
closed and cannot be used by the input and output opera-
tions described in this chapter.

Rationale: Closing the binary-port precludes interference be-

tween the binary-port and the textual port constructed from it.

(port-has-port-position? port) procedure
(port-position port) procedure

The port-has-port-position? procedure returns #t if
the port supports the port-position operation, and #f
otherwise.

For a binary port, the port-position procedure re-
turns the exact non-negative integer index of the posi-
tion at which the next byte would be read from or writ-
ten to the port. For a textual port, port-position re-
turns an arbitrary value that is acceptable as input for
set-port-position! (see below).

If the port does not support the operation, port-position
raises an exception with condition type &assertion.

Note: For a textual port, the port position may or may not be

an integer. If it is an integer, the integer does not necessarily

correspond to a byte or character position.

(port-has-set-port-position!? port) procedure
(set-port-position! port pos) procedure

If port is a binary port, pos must be a non-negative exact
integer. If port is a textual port, pos should be the return
value of a call to port-position.

The port-has-set-port-position? procedure returns #t
if the port supports the set-port-position! operation,
and #f otherwise.

The set-port-position! procedure raises an exception
with condition type &assertion if the port does not
support the operation. Otherwise, it sets the cur-
rent position of the port to pos. If port is an out-
put port, set-port-position! first flushes port . (See
flush-output-port, section 8.2.10.)

If port is a binary output port and the current po-
sition is set beyond the current end of the data in
the underlying data sink, the object is not extended
until new data is written at that position. The
contents of any intervening positions are unspecified.
Binary ports created by open-file-output-port and
open-file-input/output-port can always be extended
in this manner within the limits of the underlying op-
erating system. In other cases, attempts to set the
port beyond the current end of data in the underlying
object may result in an exception with condition type
&i/o-invalid-position.

(close-port port) procedure

Closes the port, rendering the port incapable of delivering
or accepting data. If port is an output port, it is flushed
before being closed. This has no effect if the port has
already been closed. A closed port is still a port. The
close-port procedure returns unspecified values.

(call-with-port port proc) procedure

Proc must accept one argument. The call-with-port
procedure calls proc with port as an argument. If proc
returns, the port is closed automatically and the values re-
turned by proc are returned. If proc does not return, the
port is not closed automatically, except perhaps when it is
possible to prove that the port will never again be used for
an input or output operation.

8.2.7. Input ports

An input port allows the reading of an infinite sequence
of bytes or characters punctuated by end of file objects.
An input port connected to a finite data source ends in an
infinite sequence of end of file objects.

It is unspecified whether a character encoding consisting of
several bytes may have an end of file between the bytes. If,

34 Revised5.94 Scheme Libraries

for example, get-char raises an &i/o-decoding exception
because the character encoding at the port’s position is
incomplete up to the next end of file, a subsequent call
to get-char may successfully decode a character if bytes
completing the encoding are available after the end of file.

(input-port? obj) procedure

Returns #t if the argument is an input port (or a combined
input and output port), and returns #f otherwise.

(port-eof? input-port) procedure

Returns #t if the lookahead-u8 procedure (if input-port
is a binary port) or the lookahead-char procedure (if
input-port is a textual port) would return the end-of-file
object, and #f otherwise. The operation may block in-
definitely if no data is available but the port cannot be
determined to be at end of file.

(open-file-input-port filename) procedure
(open-file-input-port filename file-options)

procedure
(open-file-input-port filename procedure

file-options buffer-mode)
(open-file-input-port filename procedure

file-options buffer-mode maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

Returns an input port for the named file. The file-options
and maybe-transcoder arguments are optional.

The file-options argument, which may determine various
aspects of the returned port (see section 8.2.2), defaults to
the value of (file-options).

The buffer-mode argument, if supplied, must be one of the
symbols that name a buffer mode. The buffer-mode argu-
ment defaults to block.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the returned port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position and
set-port-position! operations. Otherwise the port
will be a textual port, and whether it supports the
port-position and set-port-position! operations will
be implementation-dependent (and possibly transcoder-
dependent).

Rationale: The position of a transcoded port may not be well-

defined, and may be hard to calculate even when defined, espe-

cially when transcoding is buffered.

(open-bytevector-input-port bytevector) procedure
(open-bytevector-input-port bytevector procedure

maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

The open-bytevector-input-port procedure returns an
input port whose bytes are drawn from the bytevector . If
transcoder is specified, it becomes the transcoder associ-
ated with the returned port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position and
set-port-position! operations. Otherwise the port
will be a textual port, and whether it supports the
port-position and set-port-position! operations will
be implementation-dependent (and possibly transcoder-
dependent).

If bytevector is modified after open-bytevector-input-
port has been called, the effect on the returned port is
unspecified.

(open-string-input-port string) procedure

Returns a textual input port whose characters are drawn
from string . The port has an associated transcoder, which
is implementation-dependent. Whether the port supports
the port-position and set-port-position! operations
is implementation-dependent.

If string is modified after open-string-input-port has
been called, the effect on the returned port is unspecified.

(standard-input-port) procedure

Returns a fresh binary input port connected to standard
input. Whether the port supports the port-position
and set-port-position! operations is implementation-
dependent.

Rationale: The port is fresh so it can be safely closed or con-

verted to a textual port without risking the usability of an ex-

isting port.

(current-input-port) procedure

This returns a default textual port for input. Nor-
mally, this default port is associated with standard
input, but can be dynamically re-assigned using the
with-input-from-file procedure from the (rnrs i/o
simple (6)) library (see section 8.3). The port has an as-
sociated transcoder, which is implementation-dependent.

(make-custom-binary-input-port id read! procedure
get-position set-position! close)

Returns a newly created binary input port whose byte
source is an arbitrary algorithm represented by the read!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Read! must be a
procedure and should behave as specified below; it will be
called by operations that perform binary input.

8. I/O 35

Each of the remaining arguments may be #f; if any of those
arguments is not #f, it must be a procedure and should
behave as specified below.

• (read! bytevector start count)

Start will be a non-negative exact integer, count will
be a positive exact integer, and bytevector will be
a bytevector whose length is at least start + count .
The read! procedure should obtain up to count bytes
from the byte source, and should write those bytes
into bytevector starting at index start . The read! pro-
cedure should return an exact integer. This integer
should be the number of bytes that it has read. To
indicate an end of file condition, the read! procedure
should write no bytes and return 0.

• (get-position)

The get-position procedure (if supplied) should return
an exact integer. The return value should represent
the current position of the input port. If not supplied,
the custom port will not support the port-position
operation.

• (set-position! pos)

Pos will be a non-negative exact integer. The
set-position! procedure (if supplied) should set the po-
sition of the input port to pos. If not supplied, the cus-
tom port will not support the set-port-position!
operation.

• (close)

The close procedure (if supplied) should perform any
actions that are necessary when the input port is
closed.

Implementation responsibilities: The implementation is re-
quired to check the return values of read! and get-position
only when it actually calls them as part of an I/O opera-
tion requested by the program. The implementation is not
required to check that these procedures otherwise behave
as described. If they do not, however, the behavior of the
resulting port is unspecified.

(make-custom-textual-input-port id read! procedure
get-position set-position! close)

Returns a newly created textual input port whose char-
acter source is an arbitrary algorithm represented by the
read! procedure. Id must be a string naming the new port,
provided for informational purposes only. Read! must be a
procedure and should behave as specified below; it will be
called by operations that perform textual input.

Each of the remaining arguments may be #f; if any of those
arguments is not #f, it must be a procedure and should
behave as specified below.

• (read! string start count)

Start will be a non-negative exact integer, count will
be a positive exact integer, and string will be a string
whose length is at least start + count . The read! pro-
cedure should obtain up to count characters from the
character source, and should write those characters
into string starting at index start . The read! proce-
dure must return an exact integer. This integer should
be the number of characters that it has written. To
indicate an end of file condition, the read! procedure
should write no bytes and return 0.

• (get-position)

The get-position procedure (if supplied) should return
a single value. The return value should represent the
current position of the input port. If not supplied,
the custom port will not support the port-position
operation.

• (set-position! pos)

The set-position! procedure (if supplied) should set
the position of the input port to pos if pos is the return
value of a call to get-position. If not supplied, the cus-
tom port will not support the set-port-position!
operation.

• (close)

The close procedure (if supplied) should perform any
actions that are necessary when the input port is
closed.

The port has an associated transcoder, which is
implementation-dependent.

Implementation responsibilities: The implementation is re-
quired to check the return values of read! and get-position
only when it actually calls them as part of an I/O opera-
tion requested by the program. The implementation is not
required to check that these procedures otherwise behave
as described. If they do not, however, the behavior of the
resulting port is unspecified.

8.2.8. Binary input

(get-u8 binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, until
data are available from binary-input-port or until an end of
file is reached. If a byte becomes available, get-u8 returns
the byte as an octet and updates binary-input-port to point
just past that byte. If no input byte is seen before an end
of file is reached, the end-of-file object is returned.

36 Revised5.94 Scheme Libraries

(lookahead-u8 binary-input-port) procedure

The lookahead-u8 procedure is like get-u8, but it does
not update binary-input-port to point past the byte.

(get-bytevector-n binary-input-port count) procedure

Count must be an exact, non-negative integer, specifying
the number of bytes to be read.

Reads from binary-input-port , blocking as necessary, until
count bytes are available from binary-input-port or until
an end of file is reached. If count bytes are available before
an end of file, get-bytevector-n returns a bytevector of
size count . If fewer bytes are available before an end of file,
get-bytevector-n returns a bytevector containing those
bytes. In either case, the input port is updated to point just
past the bytes read. If an end of file is reached before any
bytes are available, get-bytevector-n returns the end-of-
file object.

(get-bytevector-n! binary-input-port procedure
bytevector start count)

Count must be an exact, non-negative integer, specifying
the number of bytes to be read. bytevector must be a
bytevector with at least start + count elements.

The get-bytevector-n! procedure reads from
binary-input-port , blocking as necessary, until count
bytes are available from binary-input-port or until an end
of file is reached. If count bytes are available before an
end of file, they are written into bytevector starting at
index start , and the result is count . If fewer bytes are
available before the next end of file, the available bytes
are written into bytevector starting at index start , and the
result is the number of bytes actually read. In either case,
the input port is updated to point just past the data read.
If an end of file is reached before any bytes are available,
get-bytevector-n! returns the end-of-file object.

(get-bytevector-some binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, un-
til data are available from binary-input-port or until
an end of file is reached. If data become available,
get-bytevector-some returns a freshly allocated bytevec-
tor containing the initial one or more bytes of available
data, and it updates binary-input-port to point just past
that data. If no input bytes are seen before an end of file
is reached, the end-of-file object is returned.

(get-bytevector-all binary-input-port) procedure

Attempts to read all data until the next end of file,
blocking as necessary. If one or more bytes are
read, get-bytevector-all returns a bytevector contain-
ing all bytes up to the next end of file. Otherwise,

get-bytevector-all returns the end-of-file object. The
operation may block indefinitely waiting to see if more data
will become available, even if some bytes are already avail-
able.

8.2.9. Textual input

(get-char textual-input-port) procedure

Reads from textual-input-port , blocking as necessary, un-
til the complete encoding for a character is available from
textual-input-port , or until the available input data cannot
be the prefix of any valid encoding, or until an end of file
is reached.

If a complete character is available before the next end of
file, get-char returns that character and updates the input
port to point past the data that encoded that character. If
an end of file is reached before any data are read, get-char
returns the end-of-file object.

(lookahead-char textual-input-port) procedure

The lookahead-char procedure is like get-char, but it
does not update textual-input-port to point past the data
that encode the character.

Note: With some of the standard transcoders described in this

document, up to four bytes of lookahead are required. Nonstan-

dard transcoders may require even more lookahead.

(get-string-n textual-input-port count) procedure

Count must be an exact, non-negative integer, specifying
the number of characters to be read.

Reads from textual-input-port , blocking as necessary, until
the encodings of count characters (including invalid encod-
ings, if they don’t raise an exception) are available, or until
an end of file is reached.

If count characters are available before end of file,
get-string-n returns a string consisting of those count
characters. If fewer characters are available before an
end of file, but one or more characters can be read,
get-string-n returns a string containing those characters.
In either case, the input port is updated to point just past
the data read. If no data can be read before an end of file,
the end-of-file object is returned.

(get-string-n! textual-input-port string start count)
procedure

Start and count must be exact, non-negative integer, with
count specifying the number of characters to be read.
String must be a string with at least start + count charac-
ters.

8. I/O 37

Reads from textual-input-port in the same manner as
get-string-n. If count characters are available before
an end of file, they are written into string starting at in-
dex start , and count is returned. If fewer characters are
available before an end of file, but one or more can be
read, those characters are written into string starting at
index start and the number of characters actually read is
returned. If no characters can be read before an end of file,
the end-of-file object is returned.

(get-string-all textual-input-port) procedure

Reads from textual-input-port until an end of file, decod-
ing characters in the same manner as get-string-n and
get-string-n!.

If data is available before the end of file, a string containing
all the text decoded from that data are returned. If no data
precedes the end of file, the end-of-file object file object is
returned.

(get-line textual-input-port) procedure

Reads from textual-input-port up to and including the line-
feed character or end of file, decoding characters in the
same manner as get-string-n and get-string-n!.

If a linefeed character is read, a string containing all of
the text up to (but not including) the linefeed character is
returned, and the port is updated to point just past the
linefeed character. If an end of file is encountered before
any linefeed character is read, but some data have been
read and decoded as characters, a string containing those
characters is returned. If an end of file is encountered be-
fore any data are read, the end-of-file object is returned.

Note: The end-of-line style, if not none, will cause all line

endings to be read as linefeed characters. See section 8.2.4.

(get-datum textual-input-port) procedure

Reads an external representation from textual-input-port
and returns the datum it represents. The get-datum pro-
cedure returns the next datum that can be parsed from
the given textual-input-port , updating textual-input-port to
point exactly past the end of the external representation
of the object.

Any 〈interlexeme space〉 (see report section 3.2) in the in-
put is first skipped. If an end of file occurs after the
〈interlexeme space〉, the end of file object (see section 8.2.5)
is returned.

If a character inconsistent with an external representation
is encountered in the input, an exception with condition
types &lexical and &i/o-read is raised. Also, if the end
of file is encountered after the beginning of an external
representation, but the external representation is incom-
plete and therefore cannot be parsed, an exception with
condition types &lexical and &i/o-read is raised.

8.2.10. Output ports

An output port is a sink to which bytes or characters are
written. The written data may control external devices or
may produce files and other objects that may subsequently
be opened for input.

(output-port? obj) procedure

Returns #t if the argument is an output port (or a com-
bined input and output port), #f otherwise.

(flush-output-port output-port) procedure

Flushes any output from the buffer of output-port to the
underlying file, device, or object. The flush-output-port
procedure returns unspecified values.

(output-port-buffer-mode output-port) procedure

Returns the symbol that represents the buffer mode of
output-port .

(open-file-output-port filename) procedure
(open-file-output-port filename file-options)

procedure
(open-file-output-port filename procedure

file-options buffer-mode)
(open-file-output-port filename procedure

file-options buffer-mode maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

The open-file-output-port procedure returns an output
port for the named file.

The file-options argument, which may determine various
aspects of the returned port (see section 8.2.2), defaults to
the value of (file-options).

The buffer-mode argument, if supplied, must be one of the
symbols that name a buffer mode. The buffer-mode argu-
ment defaults to block.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position and
set-port-position! operations. Otherwise the port
will be a textual port, and whether it supports the
port-position and set-port-position! operations will
be implementation-dependent (and possibly transcoder-
dependent).

Rationale: The byte position of a transcoded port may not be

well-defined, and may be hard to calculate even when defined,

especially when transcoding is buffered.

38 Revised5.94 Scheme Libraries

(open-bytevector-output-port) procedure
(open-bytevector-output-port maybe-transcoder)

procedure

Maybe-transcoder must be either a transcoder or #f.

The open-bytevector-output-port procedure returns
two values: an output port and an extraction procedure.
The output port accumulates the data written to it for
later extraction by the procedure.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the port. If maybe-transcoder is
#f or absent, the port will be a binary port and will support
the port-position and set-port-position! operations.
Otherwise the port will be a textual port, and whether
it supports the port-position and set-port-position!
operations will be implementation-dependent (and possi-
bly transcoder-dependent).

The extraction procedure takes no arguments. When
called, it returns a bytevector consisting of all the port’s ac-
cumulated data (regardless of the port’s current position),
removes the accumulated data from the port, and resets
the port’s position.

(call-with-bytevector-output-port proc) procedure
(call-with-bytevector-output-port proc procedure

maybe-transcoder)

Proc must accept one argument. Maybe-transcoder must
be either a transcoder or #f.

The call-with-bytevector-output-port procedure cre-
ates an output port that accumulates the data written to
it and calls proc with that output port as an argument.
Whenever proc returns, a bytevector consisting of all of
the port’s accumulated data (regardless of the port’s cur-
rent position) is returned and the port is closed.

The transcoder associated with the output port is deter-
mined as for a call to open-bytevector-output-port.

(open-string-output-port) procedure

Returns two values: a textual output port and an extrac-
tion procedure. The output port accumulates the charac-
ters written to it for later extraction by the procedure.

The port has an associated transcoder, which is
implementation-dependent. The port should support the
port-position and set-port-position! operations.

The extraction procedure takes no arguments. When
called, it returns a string consisting of all of the port’s ac-
cumulated characters (regardless of the current position),
removes the accumulated characters from the port, and re-
sets the port’s position.

(call-with-string-output-port proc) procedure

Proc must accept one argument. Creates a textual out-
put port that accumulates the characters written to it and
calls proc with that output port as an argument. Whenever
proc returns, a string consisting of all of the port’s accumu-
lated characters (regardless of the port’s current position)
is returned and the port is closed.

The port has an associated transcoder, which is
implementation-dependent. The port should support the
port-position and set-port-position! operations.

(standard-output-port) procedure
(standard-error-port) procedure

Returns a fresh binary output port connected to
the standard output or standard error respectively.
Whether the port supports the port-position and
set-port-position! operations is implementation-
dependent.

(current-output-port) procedure
(current-error-port) procedure

These return default textual ports for regular output and
error output. Normally, these default ports are associ-
ated with standard output, and standard error, respec-
tively. The return value of current-output-port can be
dynamically re-assigned using the with-output-to-file
procedure from the (rnrs i/o simple (6)) library (see
section 8.3). Each port has an associated transcoder, which
is implementation-dependent.

(make-custom-binary-output-port id procedure
write! get-position set-position! close)

Returns a newly created binary output port whose byte
sink is an arbitrary algorithm represented by the write!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Write! must be a
procedure and should behave as specified below; it will be
called by operations that perform binary output.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-binary-input-port.

• (write! bytevector start count)

Start and count will be non-negative exact integers,
and bytevector will be a bytevector whose length is at
least start + count . The write! procedure should read
up to count bytes from bytevector starting at index
start and forward them to the byte sink. If count is 0,
the write! procedure should have the effect of passing
an end-of-file object to the byte sink. In any case, the
write! procedure should return the number of bytes
that it wrote, as an exact integer.

8. I/O 39

Implementation responsibilities: The implementation is re-
quired to check the return values of write! only when it ac-
tually calls write! as part of an I/O operation requested by
the program. The implementation is not required to check
that write! otherwise behaves as described. If it does not,
however, the behavior of the resulting port is unspecified.

(make-custom-textual-output-port id procedure
write! get-position set-position! close)

Returns a newly created textual output port whose byte
sink is an arbitrary algorithm represented by the write!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Write! must be a
procedure and should behave as specified below; it will be
called by operations that perform textual output.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-textual-input-port.

• (write! string start count)

Start and count will be non-negative exact integers,
and string will be a string whose length is at least
start + count . The write! procedure should read up
to count characters from string starting at index start
and forward them to the character sink. If count is
0, the write! procedure should have the effect of pass-
ing an end-of-file object to the character sink. In any
case, the write! procedure should return the number
of characters that it wrote, as an exact integer.

The port has an associated transcoder, which is
implementation-dependent.

Implementation responsibilities: The implementation is re-
quired to check the return values of write! only when it ac-
tually calls write! as part of an I/O operation requested by
the program. The implementation is not required to check
that write! otherwise behaves as described. If it does not,
however, the behavior of the resulting port is unspecified.

8.2.11. Binary output

(put-u8 binary-output-port octet) procedure

Writes octet to the output port and returns unspecified
values.

(put-bytevector binary-output-port bytevector)
procedure

(put-bytevector binary-output-port bytevector start)
procedure

(put-bytevector binary-output-port procedure
bytevector start count)

Start and count must be non-negative exact integers that
default to 0 and (bytevector-length bytevector)−start ,
respectively. bytevector must have a length of at least
start + count . The put-bytevector procedure writes the
count bytes of the bytevector bytevector starting at index
start to the output port. The put-bytevector procedure
returns unspecified values.

8.2.12. Textual output

(put-char textual-output-port char) procedure

Writes char to the port. The put-char procedure returns
unspecified values.

(put-string textual-output-port string) procedure
(put-string textual-output-port string start) procedure
(put-string textual-output-port string start count)

procedure

Start and count must be non-negative exact integers.
String must have a length of at least start+count . Start de-
faults to 0. Count defaults to (string-length string) −
start . Writes the count characters of string starting at in-
dex start to the port. The put-string procedure returns
unspecified values.

(put-datum textual-output-port datum) procedure

Datum should be a datum value. The put-datum pro-
cedure writes an external representation of datum to
textual-output-port . The specific external representation
is implementation-dependent.

Note: The put-datum procedure merely writes the external

representation, but no trailing delimiter. If put-datum is used to

write several subsequent external representations to an output

port, care should be taken to delimit them properly so they can

be read back in by subsequent calls to get-datum.

8.2.13. Input/output ports

(open-file-input/output-port filename) procedure
(open-file-input/output-port filename file-options)

procedure
(open-file-input/output-port filename procedure

file-options buffer-mode)
(open-file-input/output-port filename procedure

file-options buffer-mode transcoder)

Returns a single port that is both an input port and
an output port for the named file. The optional ar-
guments default as described in the specification of

40 Revised5.94 Scheme Libraries

open-file-output-port. If the input/output port sup-
ports port-position and/or set-port-position!, the
same port position is used for both input and output.

(make-custom-binary-input/output-port procedure
id read! write! get-position set-position! close)

Returns a newly created binary input/output port whose
byte source and sink are arbitrary algorithms rep-
resented by the read! and write! procedures. Id
must be a string naming the new port, provided
for informational purposes only. Read! and write!
must be procedures, and should behave as spec-
ified for the make-custom-binary-input-port and
make-custom-binary-output-port procedures.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-binary-input-port.

(make-custom-textual-input/output-port procedure
id read! write! get-position set-position! close)

Returns a newly created textual input/output port
whose textual source and sink are arbitrary algo-
rithms represented by the read! and write! proce-
dures. Id must be a string naming the new port,
provided for informational purposes only. Read! and
write! must be procedures, and should behave as
specified for the make-custom-textual-input-port and
make-custom-textual-output-port procedures.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-textual-input-port.

8.3. Simple I/O

This section describes the (rnrs i/o simple (6)) li-
brary, which provides a somewhat more convenient inter-
face for performing textual I/O on ports. This library im-
plements most of the I/O procedures of the previous ver-
sion of this report [7].

The ports created by the procedures of this library
are textual ports associated implementation-dependent
transcoders.

(eof-object) procedure
(eof-object? obj) procedure

These are the same as eof-object and eof-object? from
the (rnrs ports (6)) library.

(call-with-input-file filename proc) procedure
(call-with-output-file filename proc) procedure

Proc should accept one argument. These procedures open
the file named by filename for input or for output, with
no specified file options, and call proc with the obtained
port as an argument. If proc returns, the port is closed
automatically and the values returned by proc are returned.
If proc does not return, the port is not closed automatically,
unless it is possible to prove that the port will never again
be used for an I/O operation.

(input-port? obj) procedure
(output-port? obj) procedure

These are the same as the input-port? and output-port?
procedures in the (rnrs i/o ports (6)) library.

(current-input-port) procedure
(current-output-port) procedure
(current-error-port) procedure

These are the same as the current-input-port,
current-output-port, and current-error-port proce-
dures from the (rnrs i/o ports (6)) library.

(with-input-from-file filename thunk) procedure
(with-output-to-file filename thunk) procedure

Thunk must be a procedure and should accept zero argu-
ments. The file is opened for input or output using empty
file options, and thunk is called with no arguments. Dur-
ing the dynamic extent of the call to thunk , the obtained
port is made the value returned by current-input-port
or current-output-port procedures; the previous default
values are reinstated when the dynamic extent is exited.
When thunk returns, the port is closed automatically, and
the previous values for current-input-port. The values
returned by thunk are returned. If an escape procedure is
used to escape back into the call to thunk after thunk is
returned, the behavior is unspecified.

(open-input-file filename) procedure

This opens filename for input, with empty file options, and
returns the obtained port.

(open-output-file filename) procedure

This opens filename for output, with empty file options,
and returns the obtained port.

(close-input-port input-port) procedure
(close-output-port output-port) procedure

This closes input-port or output-port , respectively.

9. File system 41

(read-char) procedure
(read-char textual-input-port) procedure

This reads from textual-input-port , blocking as necessary
until a character is available from textual-input-port , or
the data that are available cannot be the prefix of any
valid encoding, or an end of file is reached.

If a complete character is available before the next end of
file, read-char returns that character, and updates the
input port to point past that character. If an end of file is
reached before any data are read, read-char returns the
end-of-file object.

If textual-input-port is omitted, it defaults to the value re-
turned by current-input-port.

(peek-char) procedure
(peek-char textual-input-port) procedure

This is the same as read-char, but does not consume any
data from the port.

(read) procedure
(read textual-input-port) procedure

Reads an external representation from textual-input-port
and returns the datum it represents. The read procedure
operates in the same way as get-datum, see section 8.2.9.

If textual-input-port is omitted, it defaults to the value re-
turned by current-input-port.

(write-char char) procedure
(write-char char textual-output-port) procedure

Writes an encoding of the character char to the
textual-output-port . This returns unspecified values.

If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

(newline) procedure
(newline textual-output-port) procedure

This is equivalent to using write-char to write
#\linefeed to textual-output-port .

If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

(display obj) procedure
(display obj textual-output-port) procedure

Writes a representation of obj to the given
textual-output-port . Strings that appear in the writ-
ten representation are not enclosed in doublequotes, and
no characters are escaped within those strings. Character
objects appear in the representation as if written by
write-char instead of by write. The display procedure

returns unspecified values. The textual-output-port argu-
ment may be omitted, in which case it defaults to the
value returned by current-output-port.

(write obj) procedure
(write obj textual-output-port) procedure

Writes the external representation of obj to
textual-output-port . The write procedure operates
in the same way as put-datum; see section 8.2.12.

If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

9. File system

This chapter describes the (rnrs files (6)) library for
operations on the file system. This library, in addition to
the procedures described here, also exports the I/O condi-
tion types described in section 8.1.

(file-exists? filename) procedure

Filename must be a filename (see section 8.2.1). The
file-exists? procedure returns #t if the named file exists
at the time the procedure is called, #f otherwise.

(delete-file filename) procedure

Filename must be a filename (see section 8.2.1). The
delete-file procedure deletes the named file if it exists
and can be deleted, and returns unspecified values. If the
file does not exist or cannot be deleted, an exception with
condition type &i/o-filename is raised.

10. Command-line access and exit values

The procedures described in this section are exported by
the (rnrs programs (6)) library.

(command-line) procedure

Returns a nonempty list of strings. The first element is
an implementation-specific name for the running top-level
program. The remaining elements are command-line ar-
guments according to the operating system’s conventions.

(exit) procedure
(exit obj) procedure

Exits the running program and communicates an exit value
to the operating system. If no argument is supplied, the
exit procedure should communicate to the operating sys-
tem that the program exited normally. If an argument

42 Revised5.94 Scheme Libraries

is supplied, the exit procedure should translate the ar-
gument into an appropriate exit value for the operating
system.

11. Arithmetic

This chapter describes Scheme’s libraries for more special-
ized numerical operations: fixnum and flonum arithmetic,
as well as bitwise operations on exact integers.

11.1. Fixnums

Every implementation must define its fixnum range as a
closed interval

[−2w−1, 2w−1 − 1]

such that w is a (mathematical) integer w ≥ 24. Every
mathematical integer within an implementation’s fixnum
range must correspond to an exact integer that is repre-
sentable within the implementation. A fixnum is an exact
integer whose value lies within this fixnum range.

This section describes the (rnrs arithmetic fx (6))
library, which defines various operations on fixnums.
Fixnum operations perform integer arithmetic on their
fixnum arguments, but raise an exception with condition
type &implementation-restriction if the result is not a
fixnum.

This section uses fx , fx1, fx2, etc., as parameter names for
arguments that must be fixnums.

(fixnum? obj) procedure

Returns #t if obj is an exact integer within the fixnum
range, #f otherwise.

(fixnum-width) procedure
(least-fixnum) procedure
(greatest-fixnum) procedure

These procedures return w, −2w−1 and 2w−1 − 1: the
width, minimum and the maximum value of the fixnum
range, respectively.

(fx=? fx1 fx2 fx3 . . .) procedure
(fx>? fx1 fx2 fx3 . . .) procedure
(fx<? fx1 fx2 fx3 . . .) procedure
(fx>=? fx1 fx2 fx3 . . .) procedure
(fx<=? fx1 fx2 fx3 . . .) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, #f otherwise.

(fxzero? fx) procedure
(fxpositive? fx) procedure
(fxnegative? fx) procedure
(fxodd? fx) procedure
(fxeven? fx) procedure

These numerical predicates test a fixnum for a particular
property, returning #t or #f. The five properties tested by
these procedures are: whether the number is zero, greater
than zero, less than zero, odd, or even.

(fxmax fx1 fx2 . . .) procedure
(fxmin fx1 fx2 . . .) procedure

These procedures return the maximum or minimum of their
arguments.

(fx+ fx1 fx2) procedure
(fx* fx1 fx2) procedure

These procedures return the sum or product of
their arguments, provided that sum or product
is a fixnum. An exception with condition type
&implementation-restriction is raised if that sum
or product is not a fixnum.

Rationale: These procedures are restricted to two arguments

because their generalizations to three or more arguments would

require precision proportional to the number of arguments.

(fx- fx1 fx2) procedure
(fx- fx) procedure

With two arguments, this procedure returns the difference
of its arguments, provided that difference is a fixnum.

With one argument, this procedure returns the additive
inverse of its argument, provided that integer is a fixnum.

An exception with condition type &assertion is raised if
the mathematically correct result of this procedure is not
a fixnum.

(fx- (least-fixnum))

=⇒ &assertion exception

(fxdiv-and-mod fx1 fx2) procedure
(fxdiv fx1 fx2) procedure
(fxmod fx1 fx2) procedure
(fxdiv0-and-mod0 fx1 fx2) procedure
(fxdiv0 fx1 fx2) procedure
(fxmod0 fx1 fx2) procedure

Fx2 must be nonzero. These procedures implement
number-theoretic integer division and return the results of
the corresponding mathematical operations specified in re-
port section 9.8.3.

11. Arithmetic 43

(fxdiv fx1 fx2) =⇒ fx1 div fx2

(fxmod fx1 fx2) =⇒ fx1 mod fx2

(fxdiv-and-mod fx1 fx2)

=⇒ fx1 div fx2, fx1 mod fx2

; two return values

(fxdiv0 fx1 fx2) =⇒ fx1 div0 fx2

(fxmod0 fx1 fx2) =⇒ fx1 mod0 fx2

(fxdiv0-and-mod0 fx1 fx2)

=⇒ fx1 fx1 div0 fx2, fx1 mod0 fx2

; two return values

(fx+/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ fx1 fx2 fx3))

(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fx-/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((d (- fx1 fx2 fx3))

(d0 (mod0 d (expt 2 (fixnum-width))))

(d1 (div0 d (expt 2 (fixnum-width)))))

(values d0 d1))

(fx*/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ (* fx1 fx2) fx3))

(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fxnot fx) procedure

Returns the unique fixnum that is congruent mod 2w to
the one’s-complement of fx .

(fxand fx1 . . .) procedure
(fxior fx1 . . .) procedure
(fxxor fx1 . . .) procedure

These procedures return the fixnum that is the bit-wise
“and”, “inclusive or”, or “exclusive or” of the two’s com-
plement representations of their arguments. If they are
passed only one argument, they return that argument. If
they are passed no arguments, they return the fixnum (ei-
ther −1 or 0) that acts as identity for the operation.

(fxif fx1 fx2 fx3) procedure

Returns the fixnum result of the following computa-
tion:

(fxior (fxand fx1 fx2)

(fxand (fxnot fx1) fx3))

(fxbit-count fx) procedure

If fx is non-negative, this procedure returns the number of
1 bits in the two’s complement representation of fx . Other-
wise it returns the result of the following computation:

(fxnot (fxbit-count (fxnot ei)))

(fxlength fx) procedure

Returns the fixnum result of the following computa-
tion:

(do ((result 0 (+ result 1))

(bits (if (fxnegative? fx)
(fxnot fx)
fx)

(fxarithmetic-shift-right bits 1)))

((fxzero? bits)

result))

(fxfirst-bit-set fx) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of fx . If fx is 0, then −1 is
returned.

(fxfirst-bit-set 0) =⇒ -1

(fxfirst-bit-set 1) =⇒ 0

(fxfirst-bit-set -4) =⇒ 2

(fxbit-set? fx fx2) procedure

Fx2 must be non-negative and less than (fixnum-width).
The fxbit-set? procedure returns the fixnum result of the
following computation:

(not

(fxzero?

(fxand fx1

(fxarithmetic-shift-left 1 fx2))))

(fxcopy-bit fx1 fx2 fx3) procedure

Fx2 must be non-negative and less than (fixnum-width).
Fx3 must be 0 or 1. The fxcopy-bit procedure returns
the result of the following computation:

(let* ((mask (fxarithmetic-shift-left 1 fx2)))

(fxif mask

(fxarithmetic-shift-left fx3 fx2)

fx1))

(fxbit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, fx2 must be less than or equal
to fx3. The fxbit-field procedure returns the fixnum re-
sult of the following computation:

44 Revised5.94 Scheme Libraries

(let* ((mask (fxnot

(fxarithmetic-shift-left -1 fx3))))

(fxarithmetic-shift-right (fxand fx1 mask)

fx2))

(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure

Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, fx2 must be less than or
equal to fx3. The fxcopy-bit-field procedure returns
the fixnum result of the following computation:

(let* ((to fx1)

(start fx2)

(end fx3)

(from fx4)

(mask1 (fxarithmetic-shift-left -1 start))

(mask2 (fxnot

(fxarithmetic-shift-left -1 end)))

(mask (fxand mask1 mask2)))

(fxif mask

(fxarithmetic-shift-left from start)

to))

(fxarithmetic-shift fx1 fx2) procedure

The absolute value of fx2 must be less than
(fixnum-width). If

(* fx1 (expt 2 fx2))

is a fixnum, then that fixnum is returned.
Otherwise an exception with condition type
&implementation-restriction is raised.

(fxarithmetic-shift-left fx1 fx2) procedure
(fxarithmetic-shift-right fx1 fx2) procedure

Fx2 must be non-negative. fxarithmetic-shift-left
behaves the same as fxarithmetic-shift, and
(fxarithmetic-shift-right fx1 fx2) behaves the
same as (fxarithmetic-shift fx1 (fixnum- fx2)).

(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure

Fx2, fx3, and fx4 must be non-negative and less than
(fixnum-width). Fx4 must be less than the difference be-
tween fx3 and fx3. The fxrotate-bit-field procedure
returns the result of the following computation:

(let* ((n fx1)

(start fx2)

(end fx3)

(count fx4)

(width (fx- end start)))

(if (fxpositive? width)

(let* ((count (fxmod count width))

(field0

(fxbit-field n start end))

(field1

(fxarithmetic-shift-left

field0 count))

(field2

(fxarithmetic-shift-right

field0 (fx- width count)))

(field (fxior field1 field2)))

(fxcopy-bit-field n start end field))

n))

(fxreverse-bit-field fx1 fx2 fx3) procedure
Fx2 and fx3 must be non-negative and less than
(fixnum-width). Moreover, fx2 must be less than or equal
to fx3. The fxreverse-bit-field procedure returns the
fixnum obtained from fx1 by reversing the bit field specified
by fx2 and fx3.

(fxreverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

(fxreverse-bit-field #b1010010 91 -4)

=⇒ 82 ; #b1010010

11.2. Flonums

This section describes the (rnrs arithmetic flonum
(6)) library.

This section uses fl , fl1, fl2, etc., as parameter names for
arguments that must be flonums, and ifl as a name for ar-
guments that must be integer-valued flonums, i.e., flonums
for which the integer-valued? predicate returns true.

(flonum? obj) procedure

Returns #t if obj is a flonum, #f otherwise.

(real->flonum x) procedure

Returns the best flonum representation of x .

The value returned is a flonum that is numerically closest
to the argument.

Rationale: Not all reals are inexact, and some inexact reals

may not be flonums.

Note: If flonums are represented in binary floating point, then

implementations are strongly encouraged to break ties by pre-

ferring the floating point representation whose least significant

bit is zero.

(fl=? fl1 fl2 fl3 . . .) procedure
(fl<? fl1 fl2 fl3 . . .) procedure
(fl<=? fl1 fl2 fl3 . . .) procedure
(fl>? fl1 fl2 fl3 . . .) procedure
(fl>=? fl1 fl2 fl3 . . .) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, #f otherwise. These predicates are required
to be transitive.

11. Arithmetic 45

(fl= +inf.0 +inf.0) =⇒ #t

(fl= -inf.0 +inf.0) =⇒ #f

(fl= -inf.0 -inf.0) =⇒ #t

(fl= 0.0 -0.0) =⇒ #t

(fl< 0.0 -0.0) =⇒ #f

(fl= +nan.0 fl) =⇒ #f

(fl< +nan.0 fl) =⇒ #f

(flinteger? fl) procedure
(flzero? fl) procedure
(flpositive? fl) procedure
(flnegative? fl) procedure
(flodd? ifl) procedure
(fleven? ifl) procedure
(flfinite? fl) procedure
(flinfinite? fl) procedure
(flnan? fl) procedure

These numerical predicates test a flonum for a particu-
lar property, returning #t or #f. The flinteger? proce-
dure tests whether the number is an integer, flzero? tests
whether it is fl=? to zero, flpositive? tests whether it
is greater than zero, flnegative? tests whether it is less
than zero, flodd? tests whether it is odd, fleven? tests
whether it is even, flfinite? tests whether it is not an
infinity and not a NaN, flinfinite? tests whether it is
an infinity, and flnan? tests whether it is a NaN.

(flnegative? -0.0) =⇒ #f

(flfinite? +inf.0) =⇒ #f

(flfinite? 5.0) =⇒ #t

(flinfinite? 5.0) =⇒ #f

(flinfinite? +inf.0) =⇒ #t

Note: (flnegative? -0.0) must return #f, else it would lose

the correspondence with (fl< -0.0 0.0), which is #f according

to the IEEE standards.

(flmax fl1 fl2 . . .) procedure
(flmin fl1 fl2 . . .) procedure

These procedures return the maximum or minimum of their
arguments. They always return a NaN when one or more
of the arguments is a NaN.

(fl+ fl1 . . .) procedure
(fl* fl1 . . .) procedure

These procedures return the flonum sum or product of
their flonum arguments. In general, they should return
the flonum that best approximates the mathematical sum
or product. (For implementations that represent flonums
as IEEE binary floating point numbers, the meaning of
“best” is defined by the IEEE standards.)

(fl+ +inf.0 -inf.0) =⇒ +nan.0

(fl+ +nan.0 fl) =⇒ +nan.0

(fl* +nan.0 fl) =⇒ +nan.0

(fl- fl1 fl2 . . .) procedure
(fl- fl) procedure
(fl/ fl1 fl2 . . .) procedure
(fl/ fl) procedure

With two or more arguments, these procedures return the
flonum difference or quotient of their flonum arguments,
associating to the left. With one argument, however, they
return the additive or multiplicative flonum inverse of their
argument. In general, they should return the flonum that
best approximates the mathematical difference or quotient.
(For implementations that represent flonums as IEEE bi-
nary floating point numbers, the meaning of “best” is rea-
sonably well-defined by the IEEE standards.)

(fl- +inf.0 +inf.0) =⇒ +nan.0

For undefined quotients, fl/ behaves as specified by the
IEEE standards:

(fl/ 1.0 0.0) =⇒ +inf.0

(fl/ -1.0 0.0) =⇒ -inf.0

(fl/ 0.0 0.0) =⇒ +nan.0

(flabs fl) procedure

Returns the absolute value of fl .

(fldiv-and-mod fl1 fl2) procedure
(fldiv fl1 fl2) procedure
(flmod fl1 fl2) procedure
(fldiv0-and-mod0 fl1 fl2) procedure
(fldiv0 fl1 fl2) procedure
(flmod0 fl1 fl2) procedure

These procedures implement number-theoretic integer di-
vision and return the results of the corresponding math-
ematical operations specified in report section 9.8.3. For
zero divisors, these procedures may return a NaN or some
meaningless flonum.

(fldiv fl1 fl2) =⇒ fl1 div fl2

(flmod fl1 fl2) =⇒ fl1 mod fl2

(fldiv-and-mod fl1 fl2)

=⇒ fl1 div fl2, fl1 mod fl2

; two return values

(fldiv0 fl1 fl2) =⇒ fl1 div0 fl2

(flmod0 fl1 fl2) =⇒ fl1 mod0 fl2

(fldiv0-and-mod0 fl1 fl2)

=⇒ fl1 div0 fl2, fl1 mod0 fl2

; two return values

(flnumerator fl) procedure
(fldenominator fl) procedure

These procedures return the numerator or denominator of
fl as a flonum; the result is computed as if fl was repre-
sented as a fraction in lowest terms. The denominator is
always positive. The denominator of 0.0 is defined to be
1.0.

46 Revised5.94 Scheme Libraries

(flnumerator +inf.0) =⇒ +inf.0

(flnumerator -inf.0) =⇒ -inf.0

(fldenominator +inf.0) =⇒ 1.0

(fldenominator -inf.0) =⇒ 1.0

(flnumerator 0.75) =⇒ 3.0 ; probably
(fldenominator 0.75) =⇒ 4.0 ; probably

The following behavior is strongly recommended but not
required:

(flnumerator -0.0) =⇒ -0.0

(flfloor fl) procedure
(flceiling fl) procedure
(fltruncate fl) procedure
(flround fl) procedure

These procedures return integral flonums for flonum argu-
ments that are not infinities or NaNs. For such arguments,
flfloor returns the largest integral flonum not larger than
fl . The flceiling procedure returns the smallest integral
flonum not smaller than fl . The fltruncate procedure re-
turns the integral flonum closest to fl whose absolute value
is not larger than the absolute value of fl . The flround
procedure returns the closest integral flonum to fl , round-
ing to even when fl is halfway between two integers.

Rationale: The flround procedure rounds to even for consis-

tency with the default rounding mode specified by the IEEE

floating point standard.

Although infinities and NaNs are not integers, these pro-
cedures return an infinity when given an infinity as an ar-
gument, and a NaN when given a NaN:

(flfloor +inf.0) =⇒ +inf.0

(flceiling -inf.0) =⇒ -inf.0

(fltruncate +nan.0) =⇒ +nan.0

(flexp fl) procedure
(fllog fl) procedure
(fllog fl1 fl2) procedure
(flsin fl) procedure
(flcos fl) procedure
(fltan fl) procedure
(flasin fl) procedure
(flacos fl) procedure
(flatan fl) procedure
(flatan fl1 fl2) procedure

These procedures compute the usual transcendental func-
tions. The flexp procedure computes the base-e expo-
nential of fl . The fllog procedure with a single argument
computes the natural logarithm of fl (not the base ten loga-
rithm); (fllog fl1 fl2) computes the base-fl2 logarithm of
fl1. The flasin, flacos, and flatan procedures compute
arcsine, arccosine, and arctangent, respectively. (flatan
fl1 fl2) computes the arc tangent of fl1/fl2.

See report section 9.8.3 for the underlying mathematical
operations. In the event that these operations do not yield
a real result for the given arguments, the result may be a
NaN, or may be some meaningless flonum.

Implementations that use IEEE binary floating point arith-
metic are encouraged to follow the relevant standards for
these procedures.

(flexp +inf.0) =⇒ +inf.0

(flexp -inf.0) =⇒ 0.0

(fllog +inf.0) =⇒ +inf.0

(fllog 0.0) =⇒ -inf.0

(fllog -0.0) =⇒ unspecified
; if -0.0 is distinguished

(fllog -inf.0) =⇒ +nan.0

(flatan -inf.0)

=⇒ -1.5707963267948965

; approximately
(flatan +inf.0)

=⇒ 1.5707963267948965

; approximately

(flsqrt fl) procedure

Returns the principal square root of fl . For −0.0, flsqrt
should return −0.0; for other negative arguments, the re-
sult may be a NaN or some meaningless flonum.

Rationale: The behavior of flsqrt on −0.0 is consistent with

the IEEE floating point standard.

(flsqrt +inf.0) =⇒ +inf.0

(flsqrt -0.0) =⇒ -0.0

(flexpt fl1 fl2) procedure

Returns fl1 raised to the power fl2. fl1 should be non-
negative; if fl1 is negative, then the result may be a NaN,
or may be some meaningless flonum. If fl1 is zero, then the
result is zero. For positive fl1,

flfl2
1 = efl2 log fl1

&no-infinities condition type
(make-no-infinities-violation obj) procedure
(no-infinities-violation? obj) procedure
&no-nans condition type
(make-no-nans-violation obj) procedure
(no-nans-violation? obj) procedure

These condition types could be defined by the following
code:

11. Arithmetic 47

(define-condition-type &no-infinities

&implementation-restriction

make-no-infinities-violation no-infinities-violation?)

(define-condition-type &no-nans

&implementation-restriction

make-no-nans-violation no-nans-violation?)

These types describe that a program has executed an arith-
metic operations that is specified to return an infinity or
a NaN, respectively, on a Scheme implementation that is
not able to represent the infinity or NaN. (See report sec-
tion 9.8.2.)

(fixnum->flonum fx) procedure

Returns a flonum that is numerically closest to fx .

Note: The result of this procedure may not be numerically

equal to fx , because the fixnum precision may be greater than

the flonum precision.

11.3. Exact bitwise arithmetic

This section describes the (rnrs arithmetic bitwise
(6)) library. The exact bitwise arithmetic provides generic
operations on exact integers. This section uses ei , ei1, ei2,
etc., as parameter names that must be exact integers.

Some procedures allow extracting bit fields, i.e., numbers
representing subsequences of the binary representation of
an exact integer. Bit fields are always positive, and al-
ways defined using a finite number of bits, contrary to 2’s
complement representation which implicitly uses an infinite
extension of 0 bits or 1 bits to the left.

(bitwise-not ei) procedure

Returns the exact integer whose two’s complement repre-
sentation is the one’s complement of the two’s complement
representation of ei .

(bitwise-and ei1 . . .) procedure
(bitwise-ior ei1 . . .) procedure
(bitwise-xor ei1 . . .) procedure

These procedures return the exact integer that is the bit-
wise “and”, “inclusive or”, or “exclusive or” of the two’s
complement representations of their arguments. If they
are passed only one argument, they return that argument.
If they are passed no arguments, they return the integer
(either −1 or 0) that acts as identity for the operation.

(bitwise-if ei1 ei2 ei3) procedure

Returns the exact integer that is the result of the following
computation:

(bitwise-ior (bitwise-and ei1 ei2)
(bitwise-and (bitwise-not ei1) ei3))

(bitwise-bit-count ei) procedure

If ei is non-negative, this procedure returns the number of
1 bits in the two’s complement representation of ei . Other-
wise it returns the result of the following computation:

(bitwise-not (bitwise-bit-count (bitwise-not ei)))

(bitwise-length ei) procedure

Returns the exact integer that is the result of the following
computation:

(do ((result 0 (+ result 1))

(bits (if (negative? ei)
(bitwise-not ei)
ei)

(bitwise-arithmetic-shift bits -1)))

((zero? bits)

result))

(bitwise-first-bit-set ei) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of ei . If ei is 0, then −1 is
returned.

(bitwise-first-bit-set 0) =⇒ -1

(bitwise-first-bit-set 1) =⇒ 0

(bitwise-first-bit-set -4) =⇒ 2

(bitwise-bit-set? ei1 ei2) procedure

Ei2 must be non-negative. Returns the result of the fol-
lowing computation:

(not (zero?

(bitwise-and

(bitwise-arithmetic-shift-left 1 ei2)
ei1)))

(bitwise-copy-bit ei1 ei2 ei3) procedure

Ei2 must be non-negative, and ei3 must be either 0 or 1.
The bitwise-copy-bit procedure returns the result of the
following computation:

(let* ((mask (bitwise-arithmetic-shift-left 1 ei2)))
(bitwise-if mask

(bitwise-arithmetic-shift-left ei3 ei2)
ei1))

(bitwise-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less
than or equal to ei3. This procedure returns the result of
the following computation:

48 Revised5.94 Scheme Libraries

(let ((mask

(bitwise-not

(bitwise-arithmetic-shift-left -1 ei3))))
(bitwise-arithmetic-shift-right

(bitwise-and ei1 mask)

ei2))

(bitwise-copy-bit-field ei1 ei2 ei3 ei4) procedure
Ei2 and ei3 must be non-negative, and ei2 must be less than
or equal to ei3. The bitwise-copy-bit-field procedure
returns the result of the following computation:

(let* ((to ei1)
(start ei2)
(end ei3)
(from ei4)
(mask1

(bitwise-arithmetic-shift-left -1 start))

(mask2

(bitwise-not

(bitwise-arithmetic-shift-left -1 end)))

(mask (bitwise-and mask1 mask2)))

(bitwise-if mask

(bitwise-arithmetic-shift-left from

start)

to))

(bitwise-arithmetic-shift ei1 ei2) procedure
Returns the result of the following computation:

(floor (* ei1 (expt 2 ei2)))

Examples:
(bitwise-arithmetic-shift -6 -1)

=⇒ -3

(bitwise-arithmetic-shift -5 -1)

=⇒ -3

(bitwise-arithmetic-shift -4 -1)

=⇒ -2

(bitwise-arithmetic-shift -3 -1)

=⇒ -2

(bitwise-arithmetic-shift -2 -1)

=⇒ -1

(bitwise-arithmetic-shift -1 -1)

=⇒ -1

(bitwise-arithmetic-shift-left ei1 ei2) procedure
(bitwise-arithmetic-shift-right ei1 ei2) procedure

Ei2 must be non-negative. The
bitwise-arithmetic-shift-left procedure returns
the same result as bitwise-arithmetic-shift, and
(bitwise-arithmetic-shift-right ei1 ei2) returns
the same result as (bitwise-arithmetic-shift ei1 (-
ei2)).

(bitwise-rotate-bit-field ei1 ei2 ei3 ei4) procedure
Ei2, ei3, ei4 must be non-negative, ei2 must be less than or
equal to ei3, and ei4 must be non-negative. The procedure
returns the result of the following computation:

(let* ((n ei1)
(start ei2)
(end ei3)
(count ei4)
(width (- end start)))

(if (positive? width)

(let* ((count (mod count width))

(field0

(bitwise-bit-field n start end))

(field1 (bitwise-arithmetic-shift-left

field0 count))

(field2 (bitwise-arithmetic-shift-right

field0

(- width count)))

(field (bitwise-ior field1 field2)))

(bitwise-copy-bit-field n start end field))

n))

(bitwise-reverse-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less
than or equal to ei3. The bitwise-reverse-bit-field
procedure returns the result obtained from ei1 by reversing
the bit field specified by ei2 and ei3.

(bitwise-reverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

(bitwise-reverse-bit-field #1010010 91 -4)

=⇒ &assertion exception

12. syntax-case

The (rnrs syntax-case (6)) library provides support
for writing low-level macros in a high-level style, with au-
tomatic syntax checking, input destructuring, output re-
structuring, maintenance of lexical scoping and referential
transparency (hygiene), and support for controlled identi-
fier capture.

Rationale: While many syntax transformers are succinctly
expressed using the high-level syntax-rules form, others are
difficult or impossible to write, including some that introduce
visible bindings for or references to identifiers that do not ap-
pear explicitly in the input form, ones that maintain state or
read from the file system, and ones that construct new identi-
fiers. The syntax-case system [6] described here allows the pro-
grammer to write transformers that perform these sorts of trans-
formations, and arbitrary additional transformations, without
sacrificing the default enforcement of hygiene or the high-level
pattern-based syntax matching and template-based output con-
struction provided by syntax-rules (report section 9.20).

Because syntax-case does not require literals, including quoted

lists or vectors, to be copied or even traversed, it may be able to

preserve sharing and cycles within and among the constants of a

program. It also allows source-object correlation, i.e., the main-

tenance of ties between the original source code and expanded

output, allowing implementations to provide source-level sup-

port for debuggers and other tools.

12. syntax-case 49

12.1. Hygiene

Barendregt’s hygiene condition [1] for the lambda-calculus
is an informal notion that requires the free variables of an
expression N that is to be substituted into another expres-
sion M not to be captured by bindings in M when such
capture is not intended. Kohlbecker, et al [9] propose a
corresponding hygiene condition for macro expansion that
applies in all situations where capturing is not explicit:
“Generated identifiers that become binding instances in
the completely expanded program must only bind vari-
ables that are generated at the same transcription step”.
In the terminology of this document, the “generated iden-
tifiers” are those introduced by a transformer rather than
those present in the form passed to the transformer, and a
“macro transcription step” corresponds to a single call by
the expander to a transformer. Also, the hygiene condition
applies to all introduced bindings rather than to introduced
variable bindings alone.

This leaves open what happens to an introduced identifier
that appears outside the scope of a binding introduced by
the same call. Such an identifier refers to the lexical bind-
ing in effect where it appears (within a syntax 〈template〉;
see section 12.4) inside the transformer body or one of the
helpers it calls. This is essentially the referential trans-
parency property described by Clinger and Rees [3].

Thus, the hygiene condition can be restated as follows:

A binding for an identifier introduced into the
output of a transformer call from the expander
must capture only references to the identifier in-
troduced into the output of the same transformer
call. A reference to an identifier introduced into
the output of a transformer refers to the closest
enclosing binding for the introduced identifier or,
if it appears outside of any enclosing binding for
the introduced identifier, the closest enclosing lex-
ical binding where the identifier appears (within
a syntax 〈template〉) inside the transformer body
or one of the helpers it calls.

Explicit captures are handled via datum->syntax; see sec-
tion 12.6.

Operationally, the expander can maintain hygiene with the
help of marks and substitutions. Marks are applied selec-
tively by the expander to the output of each transformer
it invokes, and substitutions are applied to the portions
of each binding form that are supposed to be within the
scope of the bound identifiers. Marks are used to distin-
guish like-named identifiers that are introduced at different
times (either present in the source or introduced into the
output of a particular transformer call), and substitutions
are used to map identifiers to their expand-time values.

Each time the expander encounters a macro use, it ap-
plies an antimark to the input form, invokes the associ-
ated transformer, then applies a fresh mark to the output.
Marks and antimarks cancel, so the portions of the input
that appear in the output are effectively left unmarked,
while the portions of the output that are introduced are
marked with the fresh mark.

Each time the expander encounters a binding form it cre-
ates a set of substitutions, each mapping one of the (pos-
sibly marked) bound identifiers to information about the
binding. (For a lambda expression, the expander might
map each bound identifier to a representation of the for-
mal parameter in the output of the expander. For a
let-syntax form, the expander might map each bound
identifier to the associated transformer.) These substitu-
tions are applied to the portions of the input form in which
the binding is supposed to be visible.

Marks and substitutions together form a wrap that is lay-
ered on the form being processed by the expander and
pushed down toward the leaves as necessary. A wrapped
form is referred to as a wrapped syntax object. Ultimately,
the wrap may rest on a leaf that represents an identifier, in
which case the wrapped syntax object is referred to more
precisely as an identifier. An identifier contains a name
along with the wrap. (Names are typically represented by
symbols.)

When a substitution is created to map an identifier to an
expand-time value, the substitution records the name of
the identifier and the set of marks that have been ap-
plied to that identifier, along with the associated expand-
time value. The expander resolves identifier references by
looking for the latest matching substitution to be applied
to the identifier, i.e., the outermost substitution in the
wrap whose name and marks match the name and marks
recorded in the substitution. The name matches if it is the
same name (if using symbols, then by eq?), and the marks
match if the marks recorded with the substitution are the
same as those that appear below the substitution in the
wrap, i.e., those that were applied before the substitution.
Marks applied after a substitution, i.e., appear over the
substitution in the wrap, are not relevant and are ignored.

An algebra that defines how marks and substitutions work
more precisely is given in section 2.4 of Oscar Waddell’s
PhD thesis [12].

12.2. Syntax objects

A syntax object is a representation of a Scheme form that
contains contextual information about the form in addi-
tion to its structure. This contextual information is used
by the expander to maintain lexical scoping and may also
be used by an implementation to maintain source-object
correlation.

50 Revised5.94 Scheme Libraries

Syntax objects may be wrapped or unwrapped. A wrapped
syntax object (section 12.1) consists of a wrap (sec-
tion 12.1) and some internal representation of a Scheme
form. (The internal representation is unspecified, but is
typically a datum value or datum value annotated with
source information.) A wrapped syntax object represent-
ing an identifier is itself referred to as an identifier; thus,
the term identifier may refer either to the syntactic entity
(symbol, variable, or keyword) or to the concrete represen-
tation of the syntactic entity as a syntax object. Wrapped
syntax objects may or may not be distinct from other types
of values, but syntax objects representing identifiers are
distinct from other types of values.

An unwrapped syntax object is one that is unwrapped,
fully or partially, i.e., whose outer layers consist of lists
and vectors and whose leaves are either wrapped syntax
objects or nonsymbol values.

The term syntax object is used in this document to refer
to a syntax object that is either wrapped or unwrapped.
More formally, a syntax object is:

• a pair of syntax objects,

• a vector of syntax objects,

• a nonpair, nonvector, nonsymbol value, or

• a wrapped syntax object.

The distinction between the terms “syntax object” and
“wrapped syntax object” is important. For example, when
invoked by the expander, a transformer (section 12.3) must
accept a wrapped syntax object but may return any syntax
object, including an unwrapped syntax object.

12.3. Transformers

In define-syntax (report section 9.3.2), let-syntax, and
letrec-syntax forms (report section 9.19), a binding for
a syntactic keyword must be an expression that evaluates
to a transformer. (This is only the user’s responsibility;
the implementation must check this only if evaluation of
a transformer expression actually terminates. See the re-
spective specifications.)

A transformer is a transformation procedure or a variable
transformer. A transformation procedure is a procedure
that must accept one argument, a wrapped syntax object
(section 12.2) representing the input, and return a syntax
object (section 12.2) representing the output. The trans-
former is called by the expander whenever a reference to a
keyword with which it has been associated is found. If the
keyword appears in the car of a list-structured input form,
the transformer receives the entire list-structured form, and
its output replaces the entire form. Except with variable

transformers (see below), if the keyword is found in any
other definition or expression context, the transformer re-
ceives a wrapped syntax object representing just the key-
word reference, and its output replaces just the reference.
Except with variable transformers, an exception with con-
dition type &syntax is raised if the keyword appears on the
left-hand side of a set! expression.

(make-variable-transformer proc) procedure

Proc should accept one argument, a wrapped syntax ob-
ject, and return a syntax object.

The make-variable-transformer procedure creates a
variable transformer. A variable transformer is like an or-
dinary transformer except that, if a keyword associated
with a variable transformer appears on the left-hand side
of a set! expression, an exception is not raised. Instead,
proc is called with a wrapped syntax object representing
the entire set! expression as its argument, and its return
value replaces the entire set! expression.

Implementation responsibilities: The implementation must
check the restrictions on proc only to the extent performed
by applying it as described.

12.4. Parsing input and producing output

Transformers can destructure their input with
syntax-case and rebuild their output with syntax.

(syntax-case 〈expression〉 (〈literal〉 ...) 〈clause〉 ...)
syntax

Syntax: Each 〈literal〉 must be an identifier. Each 〈clause〉
must take one of the following two forms.

(〈pattern〉 〈output expression〉)
(〈pattern〉 〈fender〉 〈output expression〉)

〈Fender〉 and 〈output expression〉 must be 〈expression〉s.
A 〈pattern〉 is an identifier, constant, or one of the follow-
ing.

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

An identifier appearing within a 〈pattern〉 may be an un-
derscore (), a literal identifier listed in the list of literals
(〈literal〉 ...), or an ellipsis (...). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 ...).

12. syntax-case 51

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax viola-
tion if the same pattern variable appears more than once
in a 〈pattern〉.
Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.
A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two
identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ().

• P is a pattern variable.

• P is a literal identifier and F is an equivalent identifier
in the sense of free-identifier=? (section 12.5).

• P is of the form (P1 ... Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 ... Pn . Px) and F is a list
or improper list of n or more elements whose first n
elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn), where 〈ellipsis〉 is the identifier ... and F is a
proper list of n elements whose first k elements match
P1 through Pk, whose next m−k elements each match
Pe, and whose remaining n−m elements match Pm+1

through Pn.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n − m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 ... Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 ... Pk Pe 〈ellipsis〉 Pm+1

... Pn), where 〈ellipsis〉 is the identifier ... and F is
a vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

Semantics: syntax-case first evaluates 〈expression〉. It
then attempts to match the 〈pattern〉 from the first 〈clause〉
against the resulting value, which is unwrapped as nec-
essary to perform the match. If the pattern matches
the value and no 〈fender〉 is present, 〈output expression〉
is evaluated and its value returned as the value of the
syntax-case expression. If the pattern does not match
the value, syntax-case tries the second 〈clause〉, then the
third, and so on. It is a syntax violation if the value does
not match any of the patterns.

If the optional 〈fender〉 is present, it serves as an additional
constraint on acceptance of a clause. If the 〈pattern〉 of a
given 〈clause〉 matches the input value, the corresponding
〈fender〉 is evaluated. If 〈fender〉 evaluates to a true value,
the clause is accepted; otherwise, the clause is rejected as
if the pattern had failed to match the value. Fenders are
logically a part of the matching process, i.e., they specify
additional matching constraints beyond the basic structure
of the input.

Pattern variables contained within a clause’s 〈pattern〉 are
bound to the corresponding pieces of the input value within
the clause’s 〈fender〉 (if present) and 〈output expression〉.
Pattern variables can be referenced only within syntax ex-
pressions (see below). Pattern variables occupy the same
name space as program variables and keywords.

(syntax 〈template〉) syntax

Note: #’〈template〉 is equivalent to (syntax 〈template〉).

A syntax expression is similar to a quote expression except
that (1) the values of pattern variables appearing within
〈template〉 are inserted into 〈template〉, (2) contextual in-
formation associated both with the input and with the tem-
plate is retained in the output to support lexical scoping,
and (3) the value of a syntax expression is a syntax object.

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

The value of a syntax form is a copy of 〈template〉 in which
the pattern variables appearing within the template are re-
placed with the input subforms to which they are bound.
Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur

52 Revised5.94 Scheme Libraries

in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a syn-
tax violation if the constraints of this paragraph are not
met.

A template of the form (〈ellipsis〉 〈template〉) is identical
to 〈template〉, except that ellipses within the template have
no special meaning. That is, any ellipses contained within
〈template〉 are treated as ordinary identifiers. In particu-
lar, the template (... ...) produces a single ellipsis. This
allows macro uses to expand into forms containing ellipses.

The output produced by syntax is wrapped or unwrapped
according to the following rules.

• the copy of (〈t1〉 . 〈t2〉) is a pair if 〈t1〉 or 〈t2〉 contain
any pattern variables,

• the copy of (〈t〉 〈ellipsis〉) is a list if 〈t〉 contains any
pattern variables,

• the copy of #(〈t1〉 ... 〈tn〉) is a vector if any of
〈t1〉, . . . , 〈tn〉 contain any pattern variables, and

• the copy of any portion of 〈t〉 not containing any pat-
tern variables is a wrapped syntax object.

The input subforms inserted in place of the pattern vari-
ables are wrapped if and only if the corresponding input
subforms are wrapped.

The following definitions of or illustrate syntax-case and
syntax. The second is equivalent to the first but uses the
#’ prefix instead of the full syntax form.

(define-syntax or

(lambda (x)

(syntax-case x ()

[() (syntax #f)]

[(e) (syntax e)]

[(e1 e2 e3 ...)

(syntax (let ([t e1])

(if t t (or e2 e3 ...))))])))

(define-syntax or

(lambda (x)

(syntax-case x ()

[() #’#f]

[(e) #’e]

[(e1 e2 e3 ...)

#’(let ([t e1])

(if t t (or e2 e3 ...)))])))

The examples below define identifier macros, macro uses
supporting keyword references that do not necessarily ap-
pear in the first position of a list-structured form. The sec-
ond example uses make-variable-transformer to handle
the case where the keyword appears on the left-hand side
of a set! expression.

(define p (cons 4 5))

(define-syntax p.car

(lambda (x)

(syntax-case x ()

[(. rest) #’((car p) . rest)]

[#’(car p)])))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

(define p (cons 4 5))

(define-syntax p.car

(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! e) #’(set-car! p e)]

[(. rest) #’((car p) . rest)]

[#’(car p)]))))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 5)

12.5. Identifier predicates

(identifier? obj) procedure

Returns #t if obj is an identifier, i.e., a syntax object rep-
resenting an identifier, and #f otherwise.

The identifier? procedure is often used within a fender
to verify that certain subforms of an input form are iden-
tifiers, as in the definition of rec, which creates self-
contained recursive objects, below.

(define-syntax rec

(lambda (x)

(syntax-case x ()

[(x e)

(identifier? #’x)

#’(letrec ([x e]) x)])))

(map (rec fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

12. syntax-case 53

’(1 2 3 4 5))

=⇒ (1 2 6 24 120)

(rec 5 (lambda (x) x)) =⇒ &syntax exception

The procedures bound-identifier=? and
free-identifier=? each take two identifier argu-
ments and return #t if their arguments are equivalent
and #f otherwise. These predicates are used to compare
identifiers according to their intended use as free references
or bound identifiers in a given context.

(bound-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The procedure
bound-identifier=? returns #t if and only if a bind-
ing for one would capture a reference to the other in
the output of the transformer, assuming that the refer-
ence appears within the scope of the binding. In general,
two identifiers are bound-identifier=? only if both are
present in the original program or both are introduced by
the same transformer application (perhaps implicitly—see
datum->syntax). Operationally, two identifiers are consid-
ered equivalent by bound-identifier=? if and only if they
have the same name and same marks (section 12.1).

The bound-identifier=? procedure can be used for de-
tecting duplicate identifiers in a binding construct or for
other preprocessing of a binding construct that requires
detecting instances of the bound identifiers.

(free-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The free-identifier=?
procedure returns #t if and only if the two identifiers would
resolve to the same binding if both were to appear in
the output of a transformer outside of any bindings in-
serted by the transformer. (If neither of two like-named
identifiers resolves to a binding, i.e., both are unbound,
they are considered to resolve to the same binding.) Op-
erationally, two identifiers are considered equivalent by
free-identifier=? if and only the topmost matching sub-
stitution for each maps to the same binding (section 12.1)
or the identifiers have the same name and no matching
substitution.

syntax-case and syntax-rules use free-identifier=?
to compare identifiers listed in the literals list against input
identifiers.

The following definition of unnamed let uses
bound-identifier=? to detect duplicate identifiers.

(define-syntax let

(lambda (x)

(define unique-ids?

(lambda (ls)

(or (null? ls)

(and (let notmem?

([x (car ls)] [ls (cdr ls)])

(or (null? ls)

(and (not (bound-identifier=?

x (car ls)))

(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))

(syntax-case x ()

[(((i v) ...) e1 e2 ...)

(unique-ids? #’(i ...))

#’((lambda (i ...) e1 e2 ...) v ...)])))

The argument #’(i ...) to unique-ids? is guaranteed
to be a list by the rules given in the description of syntax
above.

With this definition of let:

(let ([a 3] [a 4]) (+ a a))

=⇒ &syntax exception

However,

(let-syntax

([dolet (lambda (x)

(syntax-case x ()

[(b)

#’(let ([a 3] [b 4]) (+ a b))]))])

(dolet a))

=⇒ 7

since the identifier a introduced by dolet and the
identifier a extracted from the input form are not
bound-identifier=?.

The following definition of case is equivalent to the one
in section 12.4. Rather than including else in the literals
list as before, this version explicitly tests for else using
free-identifier=?.

(define-syntax case

(lambda (x)

(syntax-case x ()

[(e0 [(k ...) e1 e2 ...] ...

[else-key else-e1 else-e2 ...])

(and (identifier? #’else-key)

(free-identifier=? #’else-key #’else))

#’(let ([t e0])

(cond

[(memv t ’(k ...)) e1 e2 ...]

...

[else else-e1 else-e2 ...]))]

[(e0 [(ka ...) e1a e2a ...]

[(kb ...) e1b e2b ...] ...)

#’(let ([t e0])

(cond

[(memv t ’(ka ...)) e1a e2a ...]

[(memv t ’(kb ...)) e1b e2b ...]

...))])))

With either definition of case, else is not recognized as an
auxiliary keyword if an enclosing lexical binding for else
exists. For example,

54 Revised5.94 Scheme Libraries

(let ([else #f])

(case 0 [else (write "oops")]))

=⇒ &syntax exception

since else is bound lexically and is therefore not the same
else that appears in the definition of case.

12.6. Syntax-object and datum conversions

(syntax->datum syntax-object) procedure

The procedure syntax->datum strips all syntactic informa-
tion from a syntax object and returns the corresponding
Scheme datum.

Identifiers stripped in this manner are converted to their
symbolic names, which can then be compared with eq?.
Thus, a predicate symbolic-identifier=? might be de-
fined as follows.

(define symbolic-identifier=?

(lambda (x y)

(eq? (syntax->datum x)

(syntax->datum y))))

(datum->syntax template-id datum) procedure

Template-id must be a template identifier and datum
should be a datum value. The datum->syntax procedure
returns a syntax object representation of datum that con-
tains the same contextual information as template-id , with
the effect that the syntax object behaves as if it were in-
troduced into the code when template-id was introduced.

The datum->syntax procedure allows a transformer to
“bend” lexical scoping rules by creating implicit identi-
fiers that behave as if they were present in the input form,
thus permitting the definition of macros that introduce vis-
ible bindings for or references to identifiers that do not
appear explicitly in the input form. For example, the fol-
lowing defines a loop expression that uses this controlled
form of identifier capture to bind the variable break to
an escape procedure within the loop body. (The derived
with-syntax form is like let but binds pattern variables—
see section 12.8.)

(define-syntax loop

(lambda (x)

(syntax-case x ()

[(k e ...)

(with-syntax

([break (datum->syntax #’k ’break)])

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f)))))])))

(let ((n 3) (ls ’()))

(loop

(if (= n 0) (break ls))

(set! ls (cons ’a ls))

(set! n (- n 1))))

=⇒ (a a a)

Were loop to be defined as

(define-syntax loop

(lambda (x)

(syntax-case x ()

[(e ...)

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f))))])))

the variable break would not be visible in e

The datum argument datum may also represent an arbi-
trary Scheme form, as demonstrated by the following defi-
nition of include.

(define-syntax include

(lambda (x)

(define read-file

(lambda (fn k)

(let ([p (open-file-input-port fn)])

(let f ([x (get-datum p)])

(if (eof-object? x)

(begin (close-port p) ’())

(cons (datum->syntax k x)

(f (get-datum p))))))))

(syntax-case x ()

[(k filename)

(let ([fn (syntax->datum #’filename)])

(with-syntax ([(exp ...)

(read-file fn #’k)])

#’(begin exp ...)))])))

(include "filename") expands into a begin expres-
sion containing the forms found in the file named by
"filename". For example, if the file flib.ss contains
(define f (lambda (x) (g (* x x)))), and the file
glib.ss contains (define g (lambda (x) (+ x x))),
the expression

(let ()

(include "flib.ss")

(include "glib.ss")

(f 5))

evaluates to 50.

The definition of include uses datum->syntax to convert
the objects read from the file into syntax objects in the
proper lexical context, so that identifier references and
definitions within those expressions are scoped where the
include form appears.

Using datum->syntax, it is even possible to break hygiene
entirely and write macros in the style of old Lisp macros.
The lisp-transformer procedure defined below creates
a transformer that converts its input into a datum, calls

12. syntax-case 55

the programmer’s procedure on this datum, and converts
the result back into a syntax object that is scoped at top
level (or, more accurately, wherever lisp-transformer is
defined).

(define lisp-transformer

(lambda (p)

(lambda (x)

(datum->syntax #’lisp-transformer

(p (syntax->datum x))))))

12.7. Generating lists of temporaries

Transformers can introduce a fixed number of identifiers
into their output simply by naming each identifier. In
some cases, however, the number of identifiers to be in-
troduced depends upon some characteristic of the input
expression. A straightforward definition of letrec, for
example, requires as many temporary identifiers as there
are binding pairs in the input expression. The procedure
generate-temporaries is used to construct lists of tem-
porary identifiers.

(generate-temporaries l) procedure

L must be be a list or syntax object representing a list-
structured form; its contents are not important. The num-
ber of temporaries generated is the number of elements in l .
Each temporary is guaranteed to be unique, i.e., different
from all other identifiers.

A definition of letrec equivalent to the one using
syntax-rules given in report appendix B is shown below.

(define-syntax letrec

(lambda (x)

(syntax-case x ()

((((i e) ...) b1 b2 ...)

(with-syntax

(((t ...) (generate-temporaries #’(i ...))))

#’(let ((i <undefined>) ...)

(let ((t e) ...)

(set! i t) ...

(let () b1 b2 ...))))))))

This version uses generate-temporaries instead of recur-
sively defined helper to generate the necessary temporaries.

12.8. Derived forms and procedures

The forms and procedures described in this section are de-
rived, i.e., they can defined in terms of the forms and pro-
cedures described in earlier sections of this document.

(with-syntax ((〈pattern〉 〈expression〉) . . .) 〈body〉)
syntax

The derived with-syntax form is used to bind pattern vari-
ables, just as let is used to bind variables. This allows a
transformer to construct its output in separate pieces, then
put the pieces together.

Each 〈pattern〉 is identical in form to a syntax-case pat-
tern. The value of each 〈expression〉 is computed and de-
structured according to the corresponding 〈pattern〉, and
pattern variables within the 〈pattern〉 are bound as with
syntax-case to the corresponding portions of the value
within 〈body〉.
The with-syntax form may be defined in terms of
syntax-case as follows.

(define-syntax with-syntax

(lambda (x)

(syntax-case x ()

((((p e0) ...) e1 e2 ...)

(syntax (syntax-case (list e0 ...) ()

((p ...) (let () e1 e2 ...))))))))

The following definition of cond demonstrates the use of
with-syntax to support transformers that employ recur-
sion internally to construct their output. It handles all
cond clause variations and takes care to produce one-armed
if expressions where appropriate.

(define-syntax cond

(lambda (x)

(syntax-case x ()

[(c1 c2 ...)

(let f ([c1 #’c1] [c2* #’(c2 ...)])

(syntax-case c2* ()

[()

(syntax-case c1 (else =>)

[(else e1 e2 ...) #’(begin e1 e2 ...)]

[(e0) #’e0]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t)))]

[(e0 e1 e2 ...)

#’(if e0 (begin e1 e2 ...))])]

[(c2 c3 ...)

(with-syntax ([rest (f #’c2 #’(c3 ...))])

(syntax-case c1 (=>)

[(e0) #’(let ([t e0]) (if t t rest))]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t) rest))]

[(e0 e1 e2 ...)

#’(if e0

(begin e1 e2 ...)

rest)]))]))])))

(quasisyntax 〈template〉) syntax

The quasisyntax form is similar to syntax, but it allows
parts of the quoted text to be evaluated, in a manner sim-
ilar to the operation of quasiquote (report section 9.18).

56 Revised5.94 Scheme Libraries

Within a quasisyntax template, subforms of unsyntax
and unsyntax-splicing forms are evaluated, and every-
thing else is treated as ordinary template material, as
with syntax. The value of each unsyntax subform is
inserted into the output in place of the unsyntax form,
while the value of each unsyntax-splicing subform is
spliced into the surrounding list or vector structure. Uses
of unsyntax and unsyntax-splicing are valid only within
quasisyntax expressions.

A quasisyntax expression may be nested, with each
quasisyntax introducing a new level of syntax quota-
tion and each unsyntax or unsyntax-splicing taking
away a level of quotation. An expression nested within
n quasisyntax expressions must be within n unsyntax or
unsyntax-splicing expressions to be evaluated.

As noted in report section 3.3.5, #`〈template〉 is equivalent
to (quasisyntax 〈template〉), #,〈template〉 is equivalent
to (unsyntax 〈template〉), and #,@〈template〉 is equiva-
lent to (unsyntax-splicing 〈template〉).

The quasisyntax keyword can be used in place of
with-syntax in many cases. For example, the definition of
case shown under the description of with-syntax above
can be rewritten using quasisyntax as follows.

(define-syntax case

(lambda (x)

(syntax-case x ()

[(e c1 c2 ...)

#`(let ([t e])

#,(let f ([c1 #’c1] [cmore #’(c2 ...)])

(if (null? cmore)

(syntax-case c1 (else)

[(else e1 e2 ...)

#’(begin e1 e2 ...)]

[((k ...) e1 e2 ...)

#’(if (memv t ’(k ...))

(begin e1 e2 ...))])

(syntax-case c1 ()

[((k ...) e1 e2 ...)

#`(if (memv t ’(k ...))

(begin e1 e2 ...)

#,(f (car cmore)

(cdr cmore)))]))))])))

Uses of unsyntax and unsyntax-splicing with zero or
more than one subform are valid only in splicing (list or
vector) contexts. (unsyntax template ...) is equivalent
to (unsyntax template) ..., and (unsyntax-splicing
template ...) is equivalent to (unsyntax-splicing
template) These forms are primarily useful as inter-
mediate forms in the output of the quasisyntax expander.

Note: Uses of unsyntax and unsyntax-splicing with zero

or more than one subform enable certain idioms [2], such as

#,@#,@, which has the effect of a doubly indirect splicing when

used within a doubly nested and doubly evaluated quasisyntax

expression, as with the nested quasiquote examples shown in

section 9.18.

Note: Any syntax-rules form can be expressed with
syntax-case by making the lambda expression and syntax ex-
pressions explicit, and syntax-rules may be defined in terms
of syntax-case as follows.

(define-syntax syntax-rules

(lambda (x)

(syntax-case x ()

[((k ...) [(. p) f ... t] ...)

#’(lambda (x)

(syntax-case x (k ...)

[(. p) f ... #’t] ...))])))

A more robust implementation would verify that the literals

〈literal〉 ... are all identifiers, that the first position of each

pattern is an identifier, and that at most one fender is present

in each clause.

Note: The identifier-syntax form of the base library (see
report section 9.20) may be defined in terms of syntax-case,
syntax, and make-variable-transformer as follows.

(define-syntax identifier-syntax

(syntax-rules (set!)

[(e)

(lambda (x)

(syntax-case x ()

[id (identifier? #’id) #’e]

[(x (... ...)) #’(e x (... ...))]))]

[((id exp1) ((set! var val) exp2))

(and (identifier? #’id) (identifier? #’var))

(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! var val) #’exp2]

[(id x (... ...)) #’(exp1 x (... ...))]

[id (identifier? #’id) #’exp1])))]))

12.9. Syntax violations

(syntax-violation who message form) procedure
(syntax-violation who message form subform)

procedure

Who must be #f or a string or a symbol. Message must be
a string. Form must be a syntax object or a datum value.
Subform must be a syntax object or a datum value. The
syntax-violation procedure raises an exception, report-
ing a syntax violation. The who argument should describe
the macro transformer that detected the exception. The
message argument should describe the violation. The form
argument is the erroneous source syntax object or a datum
value representing a form. The optional subform argument
is a syntax object or datum value representing a form that
more precisely locates the violation.

13. Hashtables 57

If who is #f, syntax-violation attempts to infer an ap-
propriate value for the condition object (see below) as fol-
lows: When form is either an identifier or a list-structured
syntax object containing an identifier as its first element,
then the inferred value is the identifier’s symbol. Other-
wise, no value for who is provided as part of the condition
object.

The condition object provided with the exception (see
chapter 7) has the following condition types:

• If who is not #f or can be inferred, the condition has
condition type &who, with who as the value of the who
field. In that case, who should identify the procedure
or entity that detected the exception. If it is #f, the
condition does not have condition type &who.

• The condition has condition type &message, with
message as the value of the message field.

• The condition has condition type &syntax with form
as the value of the form field, and subform as the value
of the subform field. If subform is not provided, the
value of the subform field is #f.

13. Hashtables

The (rnrs hashtables (6)) library provides a set of op-
erations on hashtables. A hashtable is a data structure that
associates keys with values. Any object can be used as a
key, provided a hash function and a suitable equivalence
function is available. A hash function is a procedure that
maps keys to integers. It is the programmer’s responsibil-
ity to ensure that the hash function is compatible with the
equivalence function, which is a procedure that accepts two
keys and returns true if they are equivalent and #f oth-
erwise. Standard hashtables for arbitrary objects based
on the eq? and eqv? predicates (see report section 9.6)
are provided. Also, hash functions for arbitrary objects,
strings, and symbols are provided.

This section uses the hashtable parameter name for argu-
ments that must be hashtables, and the key parameter
name for arguments that must be hashtable keys.

13.1. Constructors

(make-eq-hashtable) procedure
(make-eq-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts
arbitrary objects as keys, and compares those keys with
eq?. If an argument is given, the initial capacity of the
hashtable is set to approximately k elements.

(make-eqv-hashtable) procedure
(make-eqv-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts
arbitrary objects as keys, and compares those keys with
eqv?. If an argument is given, the initial capacity of the
hashtable is set to approximately k elements.

(make-hashtable hash-function equiv) procedure
(make-hashtable hash-function equiv k) procedure

Hash-function and equiv must be procedures.
Hash-function should accept a key as an argument
and should return a non-negative exact integer. Equiv
should accept two keys as arguments and return a single
value. Neither procedure should mutate the hashtable
returned by make-hashtable. The make-hashtable
procedure returns a newly allocated mutable hashtable
using hash-function as the hash function and equiv as
the equivalence function used to compare keys. If a third
argument is given, the initial capacity of the hashtable is
set to approximately k elements.

Both hash-function and equiv should behave like pure
functions on the domain of keys. For example, the
string-hash and string=? procedures are permissible
only if all keys are strings and the contents of those strings
are never changed so long as any of them continues to serve
as a key in the hashtable. Furthermore, any pair of keys
for which equiv returns true should be hashed to the same
exact integers by hash-function.

Implementation responsibilities: The implementation must
check the restrictions on hash-function and equiv to the
extent performed by applying them as described.

Note: Hashtables are allowed to cache the results of calling the

hash function and equivalence function, so programs cannot rely

on the hash function being called for every lookup or update.

Furthermore any hashtable operation may call the hash function

more than once.

Rationale: Hashtable lookups are often followed by updates,

so caching may improve performance. Hashtables are free to

change their internal representation at any time, which may

result in many calls to the hash function.

13.2. Procedures

(hashtable? hashtable) procedure

Returns #t if hashtable is a hashtable, #f otherwise.

(hashtable-size hashtable) procedure

Returns the number of keys contained in hashtable as an
exact integer.

58 Revised5.94 Scheme Libraries

(hashtable-ref hashtable key default) procedure

Returns the value in hashtable associated with key . If
hashtable does not contain an association for key , default
is returned.

(hashtable-set! hashtable key obj) procedure

Changes hashtable to associate key with obj , adding a new
association or replacing any existing association for key ,
and returns unspecified values.

(hashtable-delete! hashtable key) procedure

Removes any association for key within hashtable and re-
turns unspecified values.

(hashtable-contains? hashtable key) procedure

Returns #t if hashtable contains an association for key , #f
otherwise.

(hashtable-update! hashtable key proc default)
procedure

Proc should accept one argument, should return a sin-
gle value, and should not mutate hashtable. The
hashtable-update! procedure applies proc to the value
in hashtable associated with key , or to default if hashtable
does not contain an association for key . The hashtable is
then changed to associate key with the value returned by
proc.
The behavior of hashtable-update! is equivalent to the
following code, but may be implemented more efficiently in
cases where the implementation can avoid multiple lookups
of the same key:

(hashtable-set!

hashtable key

(proc (hashtable-ref

hashtable key default)))

(hashtable-copy hashtable) procedure
(hashtable-copy hashtable mutable) procedure

Returns a copy of hashtable. If the mutable argument is
provided and is true, the returned hashtable is mutable;
otherwise it is immutable.

Rationale: Hashtable references may be less expensive with

immutable hashtables. Also, the creator of a hashtable may

wish to prevent modifications, particularly by code outside of

the creator’s control.

(hashtable-clear! hashtable) procedure
(hashtable-clear! hashtable k) procedure

Removes all associations from hashtable and returns un-
specified values.

If a second argument is given, the current capacity of the
hashtable is reset to approximately k elements.

(hashtable-keys hashtable) procedure

Returns a vector of all keys in hashtable. The order of the
vector is unspecified.

(hashtable-entries hashtable) procedure

Returns two values, a vector of the keys in hashtable, and
a vector of the corresponding values.

(let ((h (make-eqv-hashtable)))

(hashtable-set! h 1 ’one)

(hashtable-set! h 2 ’two)

(hashtable-set! h 3 ’three)

(hashtable-entries h))

=⇒ #(1 2 3), #(one two three)

; two return values

13.3. Inspection

(hashtable-equivalence-function hashtable)
procedure

Returns the equivalence function used by hashtable
to compare keys. For hashtables created with
make-eq-hashtable and make-eqv-hashtable, returns
eq? and eqv? respectively.

(hashtable-hash-function hashtable) procedure

Returns the hash function used by hashtable.
For hashtables created by make-eq-hashtable or
make-eqv-hashtable, #f is returned.

Rationale: The make-eq-hashtable and make-eqv-hashtable

constructors are designed to hide their hash function. This

allows implementations to use the machine address of an object

as its hash value, rehashing parts of the table as necessary if a

garbage collector moves objects to different addresses.

(hashtable-mutable? hashtable) procedure

Returns #t if hashtable is mutable, otherwise #f.

13.4. Hash functions

The equal-hash, string-hash, and string-ci-hash pro-
cedures of this section are acceptable as the hash functions
of a hashtable only if the keys on which they are called
are not mutated while they remain in use as keys in the
hashtable.

14. Enumerations 59

(equal-hash obj) procedure

Returns an integer hash value for obj , based on its struc-
ture and current contents. This hash function is suitable
for use with equal? as an equivalence function.

(string-hash string) procedure

Returns an integer hash value for string , based on its cur-
rent contents. This hash function is suitable for use with
string=? as an equivalence function.

(string-ci-hash string) procedure

Returns an integer hash value for string based on its cur-
rent contents, ignoring case. This hash function is suitable
for use with string-ci=? as an equivalence function.

(symbol-hash symbol) procedure

Returns an integer hash value for symbol .

14. Enumerations

This chapter describes the (rnrs enum (6)) library for
dealing with enumerated values and sets of enumerated
values. Enumerated values are represented by ordinary
symbols, while finite sets of enumerated values form a sep-
arate type, known as the enumeration sets. The enumer-
ation sets are further partitioned into sets that share the
same universe and enumeration type. These universes and
enumeration types are created by the make-enumeration
procedure. Each call to that procedure creates a new enu-
meration type.

This library interprets each enumeration set with respect to
its specific universe of symbols and enumeration type. This
facilitates efficient implementation of enumeration sets and
enables the complement operation.

In the descriptions of the following procedures, enum-set
ranges over the enumeration sets, which are defined as
the subsets of the universes that can be defined using
make-enumeration.

(make-enumeration symbol-list) procedure

Symbol-list must be a list of symbols. The
make-enumeration procedure creates a new enumer-
ation type whose universe consists of those symbols (in
canonical order of their first appearance in the list) and
returns that universe as an enumeration set whose universe
is itself and whose enumeration type is the newly created
enumeration type.

(enum-set-universe enum-set) procedure

Returns the set of all symbols that comprise the universe
of its argument, as an enumeration set.

(enum-set-indexer enum-set) procedure

Returns a unary procedure that, given a symbol that is in
the universe of enum-set , returns its 0-origin index within
the canonical ordering of the symbols in the universe; given
a value not in the universe, the unary procedure returns #f.

(let* ((e (make-enumeration ’(red green blue)))

(i (enum-set-indexer e)))

(list (i ’red) (i ’green) (i ’blue) (i ’yellow)))

=⇒ (0 1 2 #f)

The enum-set-indexer procedure could be defined as fol-
lows using the memq procedure from the (rnrs lists (6))
library:

(define (enum-set-indexer set)

(let* ((symbols (enum-set->list

(enum-set-universe set)))

(cardinality (length symbols)))

(lambda (x)

(let ((probe (memq x symbols)))

(if probe

(- cardinality (length probe))

#f)))))

(enum-set-constructor enum-set) procedure

Returns a unary procedure that, given a list of symbols
that belong to the universe of enum-set , returns a subset
of that universe that contains exactly the symbols in the
list. The values in the list must all belong to the universe.

(enum-set->list enum-set) procedure

Returns a list of the symbols that belong to its argument,
in the canonical order of the universe of enum-set .

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list (c ’(blue red))))

=⇒ (red blue)

(enum-set-member? symbol enum-set) procedure
(enum-set-subset? enum-set1 enum-set2) procedure
(enum-set=? enum-set1 enum-set2) procedure

The enum-set-member? procedure returns #t if its first ar-
gument is an element of its second argument, #f otherwise.

The enum-set-subset? procedure returns #t if the uni-
verse of enum-set1 is a subset of the universe of enum-set2
(considered as sets of symbols) and every element of
enum-set1 is a member of enum-set2. It returns #f oth-
erwise.

60 Revised5.94 Scheme Libraries

The enum-set=? procedure returns #t if enum-set1 is a
subset of enum-set2 and vice versa, as determined by the
enum-set-subset? procedure. This implies that the uni-
verses of the two sets are equal as sets of symbols, but
does not imply that they are equal as enumeration types.
Otherwise, #f is returned.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list

(enum-set-member? ’blue (c ’(red blue)))

(enum-set-member? ’green (c ’(red blue)))

(enum-set-subset? (c ’(red blue)) e)

(enum-set-subset? (c ’(red blue)) (c ’(blue red)))

(enum-set-subset? (c ’(red blue)) (c ’(red)))

(enum-set=? (c ’(red blue)) (c ’(blue red)))))

=⇒ (#t #f #t #t #f #t)

(enum-set-union enum-set1 enum-set2) procedure
(enum-set-intersection enum-set1 enum-set2)

procedure
(enum-set-difference enum-set1 enum-set2)

procedure

Enum-set1 and enum-set2 must be enumeration sets that
have the same enumeration type. If their enumeration
types differ, a &assertion violation is raised.

The enum-set-union procedure returns the union of
enum-set1 and enum-set2. The enum-set-intersection
procedure returns the intersection of enum-set1 and
enum-set2. The enum-set-difference procedure returns
the difference of enum-set1 and enum-set2.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list (enum-set->list

(enum-set-union (c ’(blue)) (c ’(red))))

(enum-set->list

(enum-set-intersection (c ’(red green))

(c ’(red blue))))

(enum-set->list

(enum-set-difference (c ’(red green))

(c ’(red blue))))))

=⇒ ((red blue) (red) (green))

(enum-set-complement enum-set) procedure

Returns enum-set ’s complement with respect to its uni-
verse.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list

(enum-set-complement (c ’(red)))))

=⇒ (green blue)

(enum-set-projection enum-set1 enum-set2)
procedure

Projects enum-set1 into the universe of enum-set2, drop-
ping any elements of enum-set1 that do not belong to the
universe of enum-set2. (If enum-set1 is a subset of the
universe of its second, no elements are dropped, and the
injection is returned.)

(let ((e1 (make-enumeration

’(red green blue black)))

(e2 (make-enumeration

’(red black white))))

(enum-set->list

(enum-set-projection e1 e2))))

=⇒ (red black)

(define-enumeration 〈type-name〉 syntax
(〈symbol〉 . . .)
〈constructor-syntax〉)

The define-enumeration form defines an enumeration
type and provides two macros for constructing its mem-
bers and sets of its members.

A define-enumeration form is a definition and can appear
anywhere any other 〈definition〉 can appear.

〈Type-name〉 is an identifier that is bound as a syntactic
keyword; 〈symbol〉 . . . are the symbols that comprise the
universe of the enumeration (in order).

(〈type-name〉 〈symbol〉) checks at macro-expansion time
whether 〈symbol〉 is in the universe associated with
〈type-name〉. If it is, (〈type-name〉 〈symbol〉) is equiva-
lent to 〈symbol〉. It is a syntax violation if it is not.

〈Constructor-syntax〉 is an identifier that is bound to a
macro that, given any finite sequence of the symbols in the
universe, possibly with duplicates, expands into an expres-
sion that evaluates to the enumeration set of those symbols.

(〈constructor-syntax〉 〈symbol〉 . . .) checks at macro-
expansion time whether every 〈symbol〉 . . . is in the uni-
verse associated with 〈type-name〉. It is a syntax violation
if one or more is not. Otherwise

(〈constructor-syntax〉 〈symbol〉 . . .)

is equivalent to

((enum-set-constructor (〈constructor-syntax〉))
’(〈symbol〉 . . .)).

Example:

(define-enumeration color

(black white purple maroon)

color-set)

(color black) =⇒ black

17. Mutable pairs 61

(color purpel) =⇒ &syntax exception
(enum-set->list (color-set))=⇒ ()

(enum-set->list

(color-set maroon white)) =⇒ (white maroon)

15. Composite library

The (rnrs (6)) library is a composite of most of the li-
braries described in this report. The only exceptions are:

• (rnrs eval (6)) (chapter 16)

• (rnrs mutable-pairs (6)) (chapter 17)

• (rnrs mutable-strings (6)) (chapter 18)

• (rnrs r5rs (6)) (chapter 19)

The library exports all procedures and syntactic forms pro-
vided by the component libraries.

All of the bindings exported by (rnrs (6)) are exported
for both run and expand; see report section 6.2.

16. eval

The (rnrs eval (6)) library allows a program to create
Scheme expressions as data at run time and evaluate them.

(eval expression environment-specifier) procedure

Evaluates expression in the specified environment and
returns its value. Expression must be a valid
Scheme expression represented as a datum value, and
environment-specifier must be a library specifier, which can
be created using the environment procedure described be-
low.

If the first argument to eval is determined not to be a
syntactically correct expression, then eval must raise an
exception with condition type &syntax. Specifically, if the
first argument to eval is a definition or a splicing begin
form containing a definition, it must raise an exception
with condition type &syntax.

(environment import-spec . . .) procedure

Import-spec must be a datum representing an
〈import spec〉 (see report section 6.1). The environment
procedure returns an environment corresponding to
import-spec

The bindings of the environment represented by the spec-
ifier are immutable: If eval is applied to an expression
that is determined to contain an assignment to one of the
variables of the environment, then eval must raise an ex-
ception with a condition type &assertion.

(library (foo)

(export)

(import (rnrs (6)))

(write

(eval ’(let ((x 3)) x)

(environment ’(rnrs (6))))))

writes 3

(library (foo)

(export)

(import (rnrs (6)))

(write

(eval

’(eval:car (eval:cons 2 4))

(environment

’(prefix (only (rnrs (6)) car cdr cons null?)

eval:)))))

writes 2

17. Mutable pairs

The procedures provided by the (rnrs mutable-pairs
(6)) library allow new values to be assigned to the car
and cdr fields of previously allocated pairs.

(set-car! pair obj) procedure

Stores obj in the car field of pair . The set-car! procedure
returns unspecified values.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ unspecified
(set-car! (g) 3) =⇒ unspecified

; should raise &assertion exception

If an immutable pair is passed to set-car!, an exception
with condition type &assertion should be raised.

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair . The set-cdr! procedure
returns unspecified values.

If an immutable pair is passed to set-cdr!, an exception
with condition type &assertion should be raised.

(let ((x (list ’a ’b ’c ’a))

(y (list ’a ’b ’c ’a ’b ’c ’a)))

(set-cdr! (list-tail x 2) x)

(set-cdr! (list-tail y 5) y)

(list

(equal? x x)

(equal? x y)

(equal? (list x y ’a) (list y x ’b))))

=⇒ (#t #t #f)

62 Revised5.94 Scheme Libraries

18. Mutable strings

The string-set! procedure provided by the (rnrs
mutable-strings (6)) library allows mutating the char-
acters of a string in-place.

(string-set! string k char) procedure

K must be a valid index of string . The string-set! pro-
cedure stores char in element k of string and returns un-
specified values.

Passing an immutable string to string-set! should cause
an exception with condition type &assertion to be
raised.

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ unspecified
(string-set! (g) 0 #\?) =⇒ unspecified

; should raise &assertion exception
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ unspecified
; should raise &assertion exception

Note: Implementors are encouraged to make string-set! run

in constant time.

(string-fill! string char) procedure

Stores char in every element of the given string and returns
unspecified values.

19. R5RS compatibility

The features described in this chapter are exported from
the (rnrs r5rs (6)) library and provide some function-
ality of the preceding revision of this report [7] that was
omitted from the main part of the current report.

(exact->inexact z) procedure
(inexact->exact z) procedure

These are the same as the inexact and exact procedures;
see report section 9.8.4.

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure

These procedures implement number-theoretic (integer) di-
vision. n2 must be non-zero. All three procedures return
integers. If n1/n2 is an integer:

(quotient n1 n2) =⇒ n1/n2

(remainder n1 n2) =⇒ 0

(modulo n1 n2) =⇒ 0

If n1/n2 is not an integer:

(quotient n1 n2) =⇒ nq

(remainder n1 n2) =⇒ nr

(modulo n1 n2) =⇒ nm

where nq is n1/n2 rounded towards zero, 0 < |nr| < |n2|,
0 < |nm| < |n2|, nr and nm differ from n1 by a multiple of
n2, nr has the same sign as n1, and nm has the same sign
as n2.

Consequently, for integers n1 and n2 with n2 not equal to
0,

(= n1 (+ (* n2 (quotient n1 n2))

(remainder n1 n2)))

=⇒ #t

provided all numbers involved in that computation are ex-
act.

(modulo 13 4) =⇒ 1

(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3

(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3

(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1

(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0 ; inexact

Note: These procedures could be defined in terms of div and
mod (see report section 9.8.4) as follows (without checking of
the argument types):

(define (sign n)

(cond

((negative? n) -1)

((positive? n) 1)

(else 0)))

(define (quotient n1 n2)

(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)

(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)

(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

(delay 〈expression〉) syntax

The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay 〈expression〉) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate 〈expression〉, and deliver the
resulting value. The effect of 〈expression〉 returning multi-
ple values is unspecified.

References 63

(force promise) procedure

Promise must be a promise.

Forces the value of promise. If no value has been computed
for the promise, then a value is computed and returned.
The value of the promise is cached (or “memoized”) so
that if it is forced a second time, the previously computed
value is returned.

(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

=⇒ (3 3)

(define a-stream

(letrec ((next

(lambda (n)

(cons n (delay (next (+ n 1)))))))

(next 0)))

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream)))

=⇒ 2

Promises are mainly intended for programs written in func-
tional style. The following examples should not be consid-
ered to illustrate good programming style, but they illus-
trate the property that only one value is computed for a
promise, no matter how many times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise
(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Here is a possible implementation of delay and force.
Promises are implemented here as procedures of no argu-
ments, and force simply calls its argument:

(define force

(lambda (object)

(object)))

The expression

(delay 〈expression〉)

has the same meaning as the procedure call

(make-promise (lambda () 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(make-promise (lambda () expression))))),

where make-promise is defined as follows:

(define make-promise

(lambda (proc)

(let ((result-ready? #f)

(result #f))

(lambda ()

(if result-ready?

result

(let ((x (proc)))

(if result-ready?

result

(begin (set! result-ready? #t)

(set! result x)

result))))))))

Rationale: A promise may refer to its own value, as in the

last example above. Forcing such a promise may cause the

promise to be forced a second time before the value of the first

force has been computed. This complicates the definition of

make-promise.

(null-environment n) procedure

N must be the exact integer 5. The null-environment
procedure returns an environment specifier suitable for use
with eval (see chapter 16) representing an environment
that is empty except for the (syntactic) bindings for all key-
words described in the previous revision of this report [7].

(scheme-report-environment n) procedure

N must be the exact integer 5. The
scheme-report-environment procedure returns an
environment specifier for an environment that is empty
except for the bindings for the identifiers described in
the previous revision of this report [7], omitting load,
transcript-on, transcript-off, and char-ready?. The
bindings have as values the procedures of the same names
described in this report.

REFERENCES

[1] Henk P. Barendregt. Introduction to the lambda cal-
culus. Nieuw Archief voor Wisenkunde, 4(2):337–372,
1984.

[2] Alan Bawden. Quasiquotation in Lisp. In Olivier
Danvy, editor, Proc. ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program
Manipulation PEPM ’99, pages 4–12, San Antonio,
Texas, USA, January 1999. BRICS Notes Series NS-
99-1.

64 Revised5.94 Scheme Libraries

[3] William Clinger and Jonathan Rees. Macros that
work. In Proc. 1991 ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 155–162,
Orlando, Florida, January 1991. ACM Press.

[4] Danny Cohen. On holy wars and a plea for peace.
http://www.ietf.org/rfc/ien/ien137.txt, April
1980. Internet Engineering Note 137.

[5] Mark Davis. Unicode Standard Annex #29: Text
boundaries. http://www.unicode.org/reports/
tr29/, 2006.

[6] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation, 1(1):53–75, 1988.

[7] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–
105, 1998.

[8] Richard Kelsey and Michael Sperber. SRFI 34: Excep-
tion handling for programs. http://srfi.schemers.
org/srfi-34/, 2002.

[9] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion.
In Proceedings of the 1986 ACM Conference on Lisp
and Functional Programming, pages 151–161, 1986.

[10] Michael Sperber, William Clinger, R. Kent Dybvig,
Matthew Flatt, Anton van Straaten, Richard Kelsey,
and Jonathan Rees. Revised6 report on the algorith-
mic language Scheme. http://www.r6rs.org/, 2007.

[11] The Unicode Consortium. The Unicode standard, ver-
sion 5.0.0. defined by: The Unicode Standard, Version
5.0 (Boston, MA, Addison-Wesley, 2007. ISBN 0-321-
48091-0), 2007.

[12] Oscar Waddell. Extending the Scope of Syn-
tactic Abstraction. PhD thesis, Indiana Univer-
sity, August 1999. http://www.cs.indiana.edu/
∼owaddell/papers/thesis.ps.gz.

Index 65

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS, KEYWORDS, AND
PROCEDURES

... 50

antimark 49
&assertion 27
assertion-violation? 27
assoc 12
assp 12
assq 12
assv 12

base record type 16
big-endian 5
binary port 29, 31
binary-port? 33
bit fields 47
bitwise-and 47
bitwise-arithmetic-shift 48
bitwise-arithmetic-shift-left 48
bitwise-arithmetic-shift-right 48
bitwise-bit-count 47
bitwise-bit-field 47
bitwise-bit-set? 47
bitwise-copy-bit 47
bitwise-copy-bit-field 48
bitwise-first-bit-set 47
bitwise-if 47
bitwise-ior 47
bitwise-length 47
bitwise-not 47
bitwise-reverse-bit-field 48
bitwise-rotate-bit-field 48
bitwise-xor 47
bound-identifier=? 53
buffer-mode 30
buffer-mode? 30
byte 5
bytevector 5
bytevector->sint-list 7
bytevector->string 32
bytevector->u8-list 6
bytevector->uint-list 7
bytevector-copy 6
bytevector-copy! 6
bytevector-fill! 6
bytevector-ieee-double-native-ref 9
bytevector-ieee-double-native-set! 9
bytevector-ieee-double-ref 9
bytevector-ieee-single-native-ref 9
bytevector-ieee-single-native-set! 9
bytevector-ieee-single-ref 9
bytevector-length 5
bytevector-s16-native-ref 7

bytevector-s16-native-set! 7
bytevector-s16-ref 7
bytevector-s16-set! 7
bytevector-s32-native-ref 8
bytevector-s32-native-set! 8
bytevector-s32-ref 8
bytevector-s32-set! 8
bytevector-s64-native-ref 8
bytevector-s64-native-set! 8
bytevector-s64-ref 8
bytevector-s64-set! 8
bytevector-s8-ref 6
bytevector-s8-set! 6
bytevector-sint-ref 6
bytevector-sint-set! 6
bytevector-u16-native-ref 7
bytevector-u16-native-set! 7
bytevector-u16-ref 7
bytevector-u16-set! 7
bytevector-u32-native-ref 8
bytevector-u32-native-set! 8
bytevector-u32-ref 8
bytevector-u32-set! 8
bytevector-u64-native-ref 8
bytevector-u64-native-set! 8
bytevector-u64-ref 8
bytevector-u64-set! 8
bytevector-u8-ref 6
bytevector-u8-set! 6
bytevector-uint-ref 6
bytevector-uint-set! 6
bytevector=? 6
bytevector? 5

call by need 62
call-with-bytevector-output-port 38
call-with-input-file 40
call-with-output-file 40
call-with-port 33
call-with-string-output-port 38
case-lambda 14, 15
char-alphabetic? 3
char-ci<=? 3
char-ci<? 3
char-ci=? 3
char-ci>=? 3
char-ci>? 3
char-downcase 3
char-foldcase 3
char-general-category 4
char-lower-case? 3
char-numeric? 3

66 Revised5.94 Scheme Libraries

char-title-case? 3
char-titlecase 3
char-upcase 3
char-upper-case? 3
char-whitespace? 3
close-input-port 40
close-output-port 40
close-port 33
codec 30
command-line 41
compound condition 24
condition 24
&condition 24
condition 24
condition-accessor 25
condition-irritants 27
condition-message 26
condition-predicate 25
condition-who 27
condition? 25
cons* 13
constructor descriptor 17
continuable exception 23
current exception handler 23
current-error-port 38, 40
current-input-port 34, 40
current-output-port 38, 40

datum->syntax 54
define-condition-type 25
define-enumeration 60
define-record-type 19
delay 62
delete-file 41
display 41
do 14

end of file object 32
end-of-line style 30
endianness 5
endianness 5
enum-set->list 59
enum-set-complement 60
enum-set-constructor 59
enum-set-difference 60
enum-set-indexer 59
enum-set-intersection 60
enum-set-member? 59
enum-set-projection 60
enum-set-subset? 59
enum-set-union 60
enum-set-universe 59
enum-set=? 59
enumeration 59
enumeration sets 59
enumeration type 59

environment 61
eof-object 32, 40
eof-object? 32, 40
eol-style 31
equal-hash 59
equivalence function 57
&error 26
error-handling-mode 32
error? 26
eval 61
exact->inexact 62
exception 24
exceptional situation 24
exceptions 23
exists 10
exit 41

file options 30
file-exists? 41
file-options 30
filter 11
find 10
fixnum->flonum 47
fl* 45
fl+ 45
fl- 45
fl/ 45
fl<=? 44
fl<? 44
fl=? 44
fl>=? 44
fl>? 44
flabs 45
flacos 46
flasin 46
flatan 46
flceiling 46
flcos 46
fldenominator 45
fldiv 45
fldiv-and-mod 45
fldiv0 45
fldiv0-and-mod0 45
fleven? 45
flexp 46
flexpt 46
flfinite? 45
flfloor 46
flinfinite? 45
flinteger? 45
fllog 46
flmax 45
flmin 45
flmod 45
flmod0 45

Index 67

flnan? 45
flnegative? 45
flnumerator 45
flodd? 45
flonum? 44
flpositive? 45
flround 46
flsin 46
flsqrt 46
fltan 46
fltruncate 46
flush-output-port 37
flzero? 45
fold-left 11
fold-right 11
for-all 10
force 62, 63
free-identifier=? 53
fx* 42
fx*/carry 43
fx+ 42
fx+/carry 43
fx- 42
fx-/carry 43
fx<=? 42
fx<? 42
fx=? 42
fx>=? 42
fx>? 42
fxand 43
fxarithmetic-shift 44
fxarithmetic-shift-left 44
fxarithmetic-shift-right 44
fxbit-count 43
fxbit-field 43
fxbit-set? 43
fxcopy-bit 43
fxcopy-bit-field 44
fxdiv 42
fxdiv-and-mod 42
fxdiv0 42
fxdiv0-and-mod0 42
fxeven? 42
fxfirst-bit-set 43
fxif 43
fxior 43
fxlength 43
fxmax 42
fxmin 42
fxmod 42
fxmod0 42
fxnegative? 42
fxnot 43
fxodd? 42
fxpositive? 42

fxreverse-bit-field 44
fxrotate-bit-field 44
fxxor 43
fxzero? 42

generate-temporaries 55
get-bytevector-all 36
get-bytevector-n 36
get-bytevector-n! 36
get-bytevector-some 36
get-char 36
get-datum 37
get-line 37
get-string-all 37
get-string-n 36
get-string-n! 36
get-u8 35
guard 23

hash function 57
hashtable 57
hashtable-clear! 58
hashtable-contains? 58
hashtable-copy 58
hashtable-delete! 58
hashtable-entries 58
hashtable-equivalence-function 58
hashtable-hash-function 58
hashtable-keys 58
hashtable-mutable? 58
hashtable-ref 58
hashtable-set! 58
hashtable-size 57
hashtable-update! 58
hashtable? 57

&i/o 28
&i/o-decoding 31
i/o-decoding-error-transcoder 31
i/o-decoding-error? 31
&i/o-encoding 31
i/o-encoding-error-char 31
i/o-encoding-error-transcoder 31
i/o-encoding-error? 31
i/o-error-filename 28
i/o-error-port 29
i/o-error? 28
i/o-exists-not-error? 29
&i/o-file-already-exists 29
i/o-file-already-exists-error? 29
&i/o-file-exists-not 29
&i/o-file-is-read-only 29
i/o-file-is-read-only-error? 29
&i/o-file-protection 28
i/o-file-protection-error? 28
&i/o-filename 28

68 Revised5.94 Scheme Libraries

i/o-filename-error? 28
&i/o-invalid-position 28
i/o-invalid-position-error? 28
&i/o-port 29
i/o-port-error? 29
&i/o-read 28
i/o-read-error? 28
&i/o-write 28
i/o-write-error? 28
identifier 50
identifier macro 52
identifier? 52
immutable record type 15
&implementation-restriction 27
implementation-restriction-violation? 27
implicit identifier 54
inexact->exact 62
input port 29
input-port? 34
&irritants 27
irritants-condition? 27

latin-1-codec 31
lazy evaluation 62
&lexical 27
lexical-violation? 27
library specifier 61
list-sort 13
little-endian 5
lookahead-char 36
lookahead-u8 36

macro transformer 50
make-assertion-violation 27
make-bytevector 5
make-custom-binary-input-port 34
make-custom-binary-input/output-port 40
make-custom-binary-output-port 38
make-custom-textual-input-port 35
make-custom-textual-input/output-port 40
make-custom-textual-output-port 39
make-enumeration 59
make-eq-hashtable 57
make-eqv-hashtable 57
make-error 26
make-hashtable 57
make-i/o-decoding-error 31
make-i/o-encoding-error 31
make-i/o-error 28
make-i/o-exists-not-error 29
make-i/o-file-already-exists-error 29
make-i/o-file-is-read-only-error 29
make-i/o-file-protection-error 28
make-i/o-filename-error 28
make-i/o-invalid-position-error 28
make-i/o-port-error 29

make-i/o-read-error 28
make-i/o-write-error 28
make-implementation-restriction-violation 27
make-irritants-condition 27
make-lexical-violation 27
make-message-condition 26
make-no-infinities-violation 46
make-no-nans-violation 46
make-non-continuable-violation 27
make-record-constructor-descriptor 17
make-record-type-descriptor 16
make-serious-condition 26
make-syntax-violation 27
make-transcoder 32
make-undefined-violation 27
make-variable-transformer 50
make-violation 26
make-warning 26
make-who-condition 27
mark 49
member 12
memp 12
memq 12
memv 12
&message 26
message-condition? 26
modulo 62
mutable record type 15

native-endianness 5
native-eol-style 31
native-transcoder 32
newline 41
&no-infinities 46
no-infinities-violation? 46
&no-nans 46
no-nans-violation? 46
&non-continuable 27
non-continuable-violation? 27
null-environment 63
number 42

octet 5
open-bytevector-input-port 34
open-bytevector-output-port 38
open-file-input-port 34
open-file-input/output-port 39
open-file-output-port 37
open-input-file 40
open-output-file 40
open-string-input-port 34
open-string-output-port 38
output ports 29
output-port-buffer-mode 37
output-port? 37

Index 69

partition 11
pattern variable 50
peek-char 41
port 29
port-eof? 34
port-has-port-position? 33
port-has-set-port-position!? 33
port-position 33
port-transcoder 33
port? 32
position 32
promise 62
protocol 17
put-bytevector 39
put-char 39
put-datum 39
put-string 39
put-u8 39

quasisyntax 55
quotient 62

raise 23
raise-continuable 23
read 41
read-char 41
real->flonum 44
record 15
record constructor 17
record-accessor 18
record-constructor 18
record-constructor descriptor 17
record-constructor-descriptor 21
record-field-mutable? 22
record-mutator 18
record-predicate 18
record-rtd 22
record-type descriptor 16
record-type-descriptor 21
record-type-descriptor? 17
record-type-field-names 22
record-type-generative? 22
record-type-name 22
record-type-opaque? 22
record-type-parent 22
record-type-sealed? 22
record-type-uid 22
record? 22
region 14
remainder 62
remove 12
remp 12
remq 12
remv 12
(rnrs (6)) 61
(rnrs arithmetic bitwise (6)) 47

(rnrs arithmetic flonum (6)) 44
(rnrs arithmetic fx (6)) 42
(rnrs bytevector (6)) 5
(rnrs conditions (6)) 24
(rnrs control (6)) 13
(rnrs enum (6)) 59
(rnrs exceptions (6)) 23
(rnrs files (6)) 41
(rnrs hashtables (6)) 57
(rnrs i/o ports (6)) 29
(rnrs i/o simple (6)) 40
(rnrs lists (6)) 10
(rnrs mutable-pairs (6)) 61
(rnrs mutable-strings (6)) 62
(rnrs programs (6)) 41
(rnrs r5rs (6)) 62
(rnrs records inspection (6)) 22
(rnrs records procedural (6)) 16
(rnrs records syntactic (6)) 19
(rnrs sorting (6)) 13
(rnrs syntax-case (6)) 48
(rnrs unicode (6)) 3
rtd 16

scheme-report-environment 63
&serious 26
serious-condition? 26
set-car! 61
set-cdr! 61
set-port-position! 33
simple condition 24
simple-conditions 24
sint-list->bytevector 7
standard-error-port 38
standard-input-port 34
standard-output-port 38
string->bytevector 32
string->utf16 9
string->utf32 9
string->utf8 9
string-ci-hash 59
string-ci<=? 4
string-ci<? 4
string-ci=? 4
string-ci>=? 4
string-ci>? 4
string-downcase 4
string-fill! 62
string-foldcase 4
string-hash 59
string-normalize-nfc 4
string-normalize-nfd 4
string-normalize-nfkc 4
string-normalize-nfkd 4
string-set! 62

70 Revised5.94 Scheme Libraries

string-titlecase 4
string-upcase 4
substitution 49
symbol-hash 59
&syntax 27
syntax 51
syntax object 49, 50
syntax->datum 54
syntax-case 50
syntax-violation 56
syntax-violation-form 27
syntax-violation-subform 27
syntax-violation? 27

textual port 31
textual ports 29
textual-port? 33
transcoded-port 33
transcoder 30
transcoder-codec 32
transcoder-eol-style 32
transcoder-error-handling-mode 32
transformation procedure 50
transformer 50

u8-list->bytevector 6
uint-list->bytevector 7
&undefined 27
undefined-violation? 27
universe 59
unless 13, 14
utf-16-codec 31
utf-8-codec 31
utf16->string 10
utf32->string 10
utf8->string 10

variable transformer 50
vector-sort 13
vector-sort! 13
&violation 26
violation? 26

&warning 26
warning? 26
when 13, 14
&who 27
who-condition? 27
with-exception-handler 23
with-input-from-file 40
with-output-to-file 40
with-syntax 55
wrap 49
wrapped syntax object 49
write 41
write-char 41

