
Revised6 Report on the Algorithmic Language

Scheme

— Non-Normative Appendices —

MICHAEL SPERBER

R. KENT DYBVIG, MATTHEW FLATT, ANTON VAN STRAATEN

(Editors)

26 September 2007

SUMMARY

This document contains non-normative appendices to the Revised6 Report on the Algorithmic Language Scheme. These
appendices contain advice for users and suggestions for implementors on issues not fit for standardization, in particular
on platform-specific issues.

This document frequently refers back to the Revised6 Report on the Algorithmic Language Scheme [3] and the Revised
6 Report on the Algorithmic Language Scheme — Libraries — [4]; references to the report are identified by designations
such as “report section” or “report chapter”, and references to the library report are identified by designations such as
“library section” or “library chapter”.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

2 Revised6 Scheme Non-Normative Appendices

CONTENTS

A Standard-conformant mode 3
B Optional case insensitivity 3
C Use of square brackets 3
D Scripts . 3

D.1 Script interpreter 4
D.2 Syntax . 4
D.3 Platform considerations 4

E Source code representation 5
F Use of library versions 5
G Unique library names 5
References . 5

Appendix D. Scripts 3

Appendix A. Standard-conformant mode

Scheme implementations compliant with the report may
operate in a variety of modes. In particular, in addition to
one or more modes conformant with the requirements of
the report, an implementation may offer non-conformant
modes. These modes are by nature implementation-
specific, and may differ in the language and available li-
braries. In particular, non-conformant language extensions
may be available, including unsafe libraries or otherwise
unsafe features, and the semantics of the language may
differ from the semantics described in the report. More-
over, the default mode offered by a Scheme implementation
may be non-conformant, and such a Scheme implementa-
tion may require special settings or declarations to enter
the report-conformant mode. Implementors should clearly
document the nature of the default mode and how to enter
a report-conformant mode.

Appendix B. Optional case insensitivity

In contrast with earlier revisions of the report [2], the syn-
tax of data distinguishes upper and lower case in identifiers
and in characters specified via their names. For exam-
ple, the identifiers X and x are different, and the character
#\space cannot be written #\SPACE.

Implementors may wish to support case-insensitive syntax
for backward compatibility or other reasons. If they do so,
they should adopt the following directives to control case
folding.

#!fold-case
#!no-fold-case

These directives may appear anywhere comments may ap-
pear and are treated as comments, except that they af-
fect the reading of subsequent lexemes. The #!fold-case
causes the reader to case-fold (see library section 1.2) each
〈identifier〉 and 〈character name〉. The #!no-fold-case
directive causes the reader to return to the default, non-
folding behavior.

Appendix C. Use of square brackets

Even though matched square brackets are synonymous
with parentheses in the syntax, many programmers use
square brackets only in a few select places. In particu-
lar, programmers should restrict use of square brackets
to places in syntactic forms where two consecutive open
parentheses would otherwise be common. These are the
applicable forms specified in the report and the library re-
port:

• For cond forms (see report section 11.4.5), a
〈cond clause〉 may take one of the follow forms:

[〈test〉 〈expression1〉 . . .]
[〈test〉 => 〈expression〉]
[else 〈expression1〉 〈expression2〉 . . .]

• For case forms (see report section 11.4.5), a
〈case clause〉 may take one of the follow forms:

[(〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .]
[else 〈expression1〉 〈expression2〉 . . .]

• For let, let*, letrec, letrec* forms (see report
section 11.4.6), 〈bindings〉 may take the following
form:

([〈variable1〉 〈init1〉] . . .)

• For let-values and let-values* forms (see report
section 11.4.6), 〈mv-bindings〉 may take the following
form:

([〈formals1〉 〈init1〉] . . .)

• For syntax-rules forms (see report section 11.19), a
〈syntax rule〉 may take the following form:

[〈srpattern〉 〈template〉]

• For identifier-syntax forms (see report sec-
tion 11.19), the two clauses may take the following
form:

[〈id1〉 〈template1〉]
[(set! 〈id2〉 〈pattern〉) 〈template2〉]

• For do forms (see library section 5), the variable bind-
ings may take the following form:

([〈variable1〉 〈init1〉 〈step1〉] . . .)

• For case-lambda forms (see library section 5),
a 〈case-lambda clause〉 may take the following
form:

[〈formals〉 〈body〉]

• For guard forms (see library section 7.1), a
〈cond clause〉 may take one of the follow forms:

[〈test〉 〈expression1〉 . . .]
[〈test〉 => 〈expression〉]
[else 〈expression1〉 〈expression2〉 . . .]

• For syntax-case forms (see library chapter 12.4),
a 〈syntax-case rule〉 may take one of the following
forms:

[〈pattern〉 〈output expression〉]
[〈pattern〉 〈fender〉 〈output expression〉]

Appendix D. Scripts

A Scheme script is a top-level program (see report chap-
ter 8) which is packaged such that it is directly executable
by conforming implementations of Scheme, on one or more
plaforms.

4 Revised6 Scheme Non-Normative Appendices

D.1. Script interpreter

Where applicable, implementations should provide a script
interpreter in the form of an executable program named
scheme-script that is capable of initiating the execution
of Scheme scripts, as described below.

Rationale: Distributing a Scheme program that is portable

with respect to both Scheme implementations and operating

systems is challenging, even if that program has been written

in standard Scheme. Languages with a single or primary imple-

mentation can at least rely on a standard name for their script

interpreters. Standardizing the name of the executable used to

start a Scheme script removes one barrier to the distribution of

Scheme scripts.

D.2. Syntax

A Scheme script is a delimited piece of text, typically a
file, which consists of an optional script header, followed
by a top-level program. A script header has the following
syntax:

〈script header〉 −→ 〈shebang〉 /usr/bin/env 〈space〉
scheme-script 〈linefeed〉

〈shebang〉 −→ #! | #! 〈space〉

D.2.1. Script header

The script header, if present on the first line of a script, is
used by Unix-like operating systems to identify the inter-
preter to execute that script.

The script header syntax given above is the recommended
portable form that programmers should use. However, if
the first line of a script begins with #!/ or #!〈space〉, im-
plementations should ignore it on all platforms, even if it
does not conform to the recommended syntax.

Rationale: Requiring script interpreters to recognize and ig-

nore the script header helps ensure that Scheme scripts written

for Unix-like systems can also run on other kinds of systems.

Furthermore, recognizing all #!/ or #!〈space〉 combinations al-

lows local customizations to be performed by altering a script

header from its default form.

D.2.2. Example

#!/usr/bin/env scheme-script

#!r6rs

(import (rnrs base)

(rnrs io ports)

(rnrs programs))

(put-bytes (standard-output-port)

(call-with-port

(open-file-input-port

(cadr (command-line)))

get-bytes-all))

D.3. Platform considerations

Many platforms require that scripts be marked as exe-
cutable in some way. The platform-specific details of this
are beyond the scope of this report. Scripts that are not
suitably marked as executable will fail to execute on many
platforms. Other platform-specific notes for some popular
operating systems follow.

D.3.1. Apple Mac OS X

The Mac OS X operating system supports the Unix-like
script header for shell scripts that run in the Terminal.
Depending on the intended usage, it may be advisable to
choose a file name ending in .command for a script, as this
makes the script double-clickable.

D.3.2. Unix

Scheme scripts on Unix-like operating systems are sup-
ported by the presence of the script header. Scripts that
omit the script header are unlikely to be directly executable
on Unix-like systems.

To support installation of the Scheme script interpreter in
non-standard paths, scripts should use the /usr/bin/env
program as specified in the recommended script header
syntax. (Note that on many Unix-like systems, this also
allows the script interpreter itself to be implemented as a
shell script.)

D.3.3. Microsoft Windows

The Windows operating system allows a file exten-
sion to be associated with a script interpreter such as
scheme-script. This association may be configured ap-
propriately by Scheme implementations, installation pro-
grams, or by the user.

D.3.4. Selecting an implementation

If multiple implementations of Scheme are installed on a
machine, the user may wish to specify which implementa-
tion should be used to execute Scheme scripts by default.
Most platforms support some mechanism for choosing be-
tween alternative implementations of a program. For ex-
ample, Debian GNU/Linux uses the /etc/alternatives

Appendix G. Unique library names 5

mechanism to do this; Microsoft Windows uses file exten-
sion associations. Implementations are expected to con-
figure this appropriately, e.g., as part of their installation
procedure. Failing that, users must perform any necessary
configuration to choose their preferred Scheme script inter-
preter.

Appendix E. Source code representation

The report does not specify how source code is represented
and stored. The only requirement the report imposes is
that the source code of a top-level program (see report
section 8.1) or a script (see section D.2) be delimited. The
source code of a library is self-delimiting in the sense that,
if the beginning of a library form can be identified, so can
the end.

Implementations may take radically different approaches to
storing source code for libraries, among them: files in the
file system where each file contains an arbitrary number of
library forms, files in the file system where each file contains
exactly one library form, records in a database, and data
structures in memory.

Similarly, programs and scripts may be stored in a variety
of formats. Platform constraints may restrict the choices
available to an implementation, which is why the report
neither mandates nor recommends a specific method for
storage.

Implementations may provide a means for importing li-
braries coming from the outside via an interface that ac-
cepts a UTF-8 text file in Unicode Normalization Form C
where line endings are encoded as linefeed characters. Such
text files may contain an arbitrary number of library forms.
(Authors of such files should include an #!r6rs comment
if the file is written purely with the lexical and datum syn-
tax described in the report. See report section 4.2.3.) After
importing such a file, the libraries defined in it should be
available to other libraries and files. An implementation
may store the file as is, or convert it to some storage for-
mat to achieve this.

Similarly, implementations may provide a means for exe-
cuting a program represented as a UTF-8 text file contain-
ing its source code. Again, authors of such files should
include an #!r6rs comment if the file is written purely
with the lexical and datum syntax described in the report.
This report does not describe a file format that allows both
libraries and programs to appear in the same file.

Appendix F. Use of library versions

Names for libraries may include a version. An
〈import spec〉 may designate a set of acceptable versions
that may be imported. Conversely, only one version of
each library should be part of a program. This allows using

the “name part” of a 〈library name〉 for different purposes
than the 〈version〉.

In particular, if several different variants of a library exists
where it is feasible that they coexist in the same program,
it is recommended that different names be used for the vari-
ants. In contrast, for compatible versions of a library where
coexistence of several versions is unnecessary and undesir-
able, it is recommended that the same name and different
versions be used. In particular, it is recommended that
new versions of libraries that are conservative extensions
of old ones differ only in the version, not in the name.

Correspondingly, it is recommended that 〈import spec〉s
do not constrain an import to a single version, but instead
specify a wide range of acceptable versions of a library.

Implementations that allow two libraries of the same name
with different versions to coexist in the same program
should report when processing a program that actually
makes use of this extension.

Appendix G. Unique library names

Programmers should choose names for distributed libraries
that do not collide with other libraries’ names. This ap-
pendix suggests a convention for generating unique library
names, similar to the convention for Java [1].

A unique library name can be formed by associating the
library with an Internet domain name, such as mit.edu.
The lower-case components of the domain are reversed to
form a prefix for the library name. Adding further name
components to establish a hierarchy may be advisable, de-
pending on the size of the organization associated with the
domain name, the number of libraries to be distributed
from it, and other organizational properties or conventions
associated with the library.

Programmers should use library names that are suitable
for use as part of file names. Special characters in domain
names that do not fit conventions of commonly used file
systems should be replaced by hyphens or suitable “escape
sequences” that, as much as possible, are suitable for avoid-
ing collisions. Here are some examples for possible library
names according to this convention:

(edu mit swiss cheese)

(de deinprogramm educational graphics turtle)

(com pan-am booking passenger)

The name of a library does not necessarily indicate an In-
ternet address where the package is distributed.

REFERENCES

[1] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The JavaTM Language Specification. Addison-Wesley,
third edition, 2005.

6 Revised6 Scheme Non-Normative Appendices

[2] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–105,
1998.

[3] Michael Sperber, R. Kent Dybvig, Matthew Flatt, An-
ton van Straaten, Richard Kelsey, William Clinger, and
Jonathan Rees. Revised6 report on the algorithmic lan-
guage Scheme. http://www.r6rs.org/, 2007.

[4] Michael Sperber, R. Kent Dybvig, Matthew Flatt, An-
ton van Straaten, Richard Kelsey, William Clinger, and
Jonathan Rees. Revised6 report on the algorithmic
language Scheme (Libraries). http://www.r6rs.org/,
2007.

http://www.r6rs.org/
http://www.r6rs.org/

	Standard-conformant mode
	Optional case insensitivity
	Use of square brackets
	Scripts
	Script interpreter
	Syntax
	Platform considerations

	Source code representation
	Use of library versions
	Unique library names
	References

