Introduction

Programming languages should be designed not by piling feature on top of feature, but by removing the weaknesses and restrictions that make additional features appear necessary. Scheme demonstrates that a very small number of rules for forming expressions, with no restrictions on how they are composed, suffice to form a practical and efficient programming language that is flexible enough to support most of the major programming paradigms in use today.

Scheme was one of the first programming languages to incorporate first class procedures as in the lambda calculus, thereby proving the usefulness of static scope rules and block structure in a dynamically typed language. Scheme was the first major dialect of Lisp to distinguish procedures from lambda expressions and symbols, to use a single lexical environment for all variables, and to evaluate the operator position of a procedure call in the same way as an operand position. By relying entirely on procedure calls to express iteration, Scheme emphasized the fact that tail-recursive procedure calls are essentially gotos that pass arguments. Scheme was the first widely used programming language to embrace first class escape procedures, from which all previously known sequential control structures can be synthesized. A subsequent version of Scheme introduced the concept of exact and inexact number objects, an extension of Common Lisp’s generic arithmetic. More recently, Scheme became the first programming language to support hygienic macros, which permit the syntax of a block-structured language to be extended in a consistent and reliable manner.

Guiding principles

To help guide the standardization effort, the editors have adopted a set of principles, presented below. Like the Scheme language defined in Revised5 Report on the Algorithmic Language Scheme [15], the language described in this report is intended to:

In addition, this report is intended to:

While it was possible to write portable programs in Scheme as described in Revised5 Report on the Algorithmic Language Scheme, and indeed portable Scheme programs were written prior to this report, many Scheme programs were not, primarily because of the lack of substantial standardized libraries and the proliferation of implementation-specific language additions.

In general, Scheme should include building blocks that allow a wide variety of libraries to be written, include commonly used user-level features to enhance portability and readability of library and application code, and exclude features that are less commonly used and easily implemented in separate libraries.

The language described in this report is intended to also be backward compatible with programs written in Scheme as described in Revised5 Report on the Algorithmic Language Scheme to the extent possible without compromising the above principles and future viability of the language. With respect to future viability, the editors have operated under the assumption that many more Scheme programs will be written in the future than exist in the present, so the future programs are those with which we should be most concerned.

Acknowledgements

We would like to thank the following people for their help: Lauri Alanko, Eli Barzilay, Alan Bawden, Michael Blair, Per Bothner, Trent Buck, Thomas Bushnell, Taylor Campbell, Ludovic Court?s, Pascal Costanza, John Cowan, George Carrette, Andy Cromarty, David Cuthbert, Pavel Curtis, Jeff Dalton, Olivier Danvy, Ken Dickey, Ray Dillinger, Blake Coverett, Jed Davis, Bruce Duba, Carl Eastlund, Sebastian Egner, Tom Emerson, Marc Feeley, Andy Freeman, Ken Friedenbach, Richard Gabriel, Martin Gasbichler, Peter Gavin, Arthur A. Gleckler, Aziz Ghuloum, Yekta Gürsel, Ken Haase, Lars T Hansen, Ben Harris, Dave Herman, Robert Hieb, Nils M. Holm, Paul Hudak, Stanislav Ievlev, James Jackson, Aubrey Jaffer, Shiro Kawai, Alexander Kjeldaas, Michael Lenaghan, Morry Katz, Felix Klock, Donovan Kolbly, Marcin Kowalczyk, Chris Lindblad, Thomas Lord, Bradley Lucier, Mark Meyer, Jim Miller, Dan Muresan, Jason Orendorff, Jim Philbin, John Ramsdell, Jeff Read, Jorgen Schaefer, Paul Schlie, Manuel Serrano, Mike Shaff, Olin Shivers, Jonathan Shapiro, Jens Axel Søgaard, Pinku Surana, Julie Sussman, Mikael Tillenius, Sam Tobin-Hochstadt, David Van Horn, Andre van Tonder, Reinder Verlinde, Oscar Waddell, Perry Wagle, Alan Watson, Daniel Weise, Andrew Wilcox, Jon Wilson, Henry Wu, Ozan Yigit, and Chongkai Zhu. We thank Carol Fessenden, Daniel Friedman, and Christopher Haynes for permission to use text from the Scheme 311 version 4 reference manual. We thank Texas Instruments, Inc. for permission to use text from the TI Scheme Language Reference Manual [26]. We gladly acknowledge the influence of manuals for MIT Scheme [20], T [21], Scheme 84 [12], Common Lisp [25], Chez Scheme [8], PLT Scheme [11], and Algol 60 [1].

We also thank Betty Dexter for the extreme effort she put into setting this report in TEX, and Donald Knuth for designing the program that caused her troubles.

The Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, the Computer Science Department of Indiana University, the Computer and Information Sciences Department of the University of Oregon, and the NEC Research Institute supported the preparation of this report. Support for the MIT work was provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-80-C-0505. Support for the Indiana University work was provided by NSF grants NCS 83-04567 and NCS 83-03325.